塔河地区中下奥陶统储层硫化物成因分析

李开开, 蔡春芳, 蔡镏璐, 姜磊, 向雷. 2012. 塔河地区中下奥陶统储层硫化物成因分析. 岩石学报, 28(3): 806-814.
引用本文: 李开开, 蔡春芳, 蔡镏璐, 姜磊, 向雷. 2012. 塔河地区中下奥陶统储层硫化物成因分析. 岩石学报, 28(3): 806-814.
Li KaiKai, Cai ChunFang, Cai LiuLu, Jiang Lei, Xiang Lei. 2012. Origin of sulfides in the Middle and Lower Ordovician carbonates in Tahe oilfield, Tarim Basin. Acta Petrologica Sinica, 28(3): 806-814.
Citation: Li KaiKai, Cai ChunFang, Cai LiuLu, Jiang Lei, Xiang Lei. 2012. Origin of sulfides in the Middle and Lower Ordovician carbonates in Tahe oilfield, Tarim Basin. Acta Petrologica Sinica, 28(3): 806-814.

塔河地区中下奥陶统储层硫化物成因分析

  • 基金项目:

    本文受国家科技重大项目油气专项(2011ZX05008-003)资助.

详细信息
    作者简介:

    李开开,男,1983年生,博士,从事碳酸盐岩储层流体-岩石相互作用研究,E-mail: likaikai1078@mail.igcas.ac.cn

    通讯作者: 蔡春芳,男,1966年生,博士,研究员,博士生导师,从事盆地流体-岩石相互作用研究,E-mail: cai_cf@mail.iggcas.ac.cn
  • 中图分类号: P595

Origin of sulfides in the Middle and Lower Ordovician carbonates in Tahe oilfield, Tarim Basin

More Information
  • 研究表明塔河地区中下奥陶统碳酸盐岩储层后期受到了大气淡水和深部热卤水的成岩改造作用。这些储层天然气中含有高达8.3% H2S气体, 裂缝与孔洞充填方解石流体包裹体中气相组分含有高达11%的H2S。这些方解石的均一化温度以110.2~198.9℃为主,而且,H2S气体、原油和黄铁矿集合体δ34S值主要介于18‰~22‰,这些特征显示,硫化物形成于相对高温条件下热化学硫酸盐还原-有机质氧化作用(TSR)。有机质被氧化的证据包括高温方解石具有轻δ13C特征(δ13C为-4.3‰~-8.3‰)以及现今地层水具有轻δ13CHCO3-值(-6.0‰~-13.8‰)。现今油气藏中TSR成因H2S浓度低于流体包裹体,应该与H2S沉淀为黄铁矿、合并入原油中而导致富硫原油产生有关。一些黄铁矿具有很轻的δ34S值,可轻达-26‰,为微生物硫酸盐还原成因,但是其分布比较局限。

  • 加载中
  • 图 1 

    塔河油田不同类型样品及井位分布图

    Figure 1. 

    Map showing various types of samples distribution and well location

    图 2 

    位于南部井区的S109(a)和位于北部井区的S75井(b)的塔河地区埋藏-热历史曲线(据Li et al.,2011修改)

    Figure 2. 

    Diagram showing burial-thermal history of wells S109 in the south(a)and S75 in the north(b)(after Li et al.,2011)

    图 3 

    塔河地区奥陶系具有不同形态及分布样式的黄铁矿

    Figure 3. 

    Pyrite of various crystalline form and distribution

  •  

    Cai CF, Hu W and Worden RH. 2001. Thermochemical sulphate reduction in Cambo-Ordovician carbonates in Central Tarim. Marine and Petroleum Geology, 18: 729-741

     

    Cai CF, Worden RH, Wang QH, Xiang TS, Zhu JQ and Chu XL. 2002. Chemical and isotopic evidence for secondary alteration of natural gases in the Hetianhe Field, Bachu Uplift of the Tarim Basin. Organic Geochemistry, 33: 1415-1427

     

    Cai CF, Worden RH, Bottrell SH, Wang LS and Yang CC. 2003. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China. Chemical Geology, 202: 39-57

     

    Cai CF, Li KK, Li HT, Li M and Chen LX. 2008. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China. Applied Geochemistry, 23(8): 2226-2235

     

    Cai CF, Zhang CM, Cai LL, Wu GH, Jiang L, Xu ZM, Li KK, Ma AL and Chen LX. 2009a. Origins of Palaeozoic oils in the Tarim Basin: Evidence from sulfur isotopes and biomarkers. Chemical Geology, 268: 197-210

     

    Cai CF, Li KK, Cai LL, Li B and Jiang L. 2009b. Geochemical characteristics and origins of fracture-, and vug-fillings of the Ordovician, Tahe oilfiled, Tarim Basin. Acta Petrologica Sinica, 25(10): 2399-2404(in Chinese with English abstract)

     

    Cai CF, Li KK, Zhu YM, Xiang L, Jiang L, Tenger, Cai XY and Cai LL. 2010. TSR origin of sulfur in the Permian and Triassic reservoir bitumen in East Sichuan Basin, China. Organic Geochemistry, 41: 871-878

     

    Dai JX. 1985. Distribution, classification and origin of natural gas with hydrogen sulphide China. Acta Sedimentologica Sinica, 3(4): 109-120(in Chinese with English abstract)

     

    Jia CS, Ma XJ, Rao D and Gao RX. 2007. Isotopic characteristics of oil filed waters from Ordovician oil accumulations in Tahe Oilfield and its geological significances. Acta Sedimentologica Sinica, 29(3): 292-297(in Chinese with English abstract)

     

    Jin ZJ, Zhu DY, Zhang XF, Hu WX and Song YC. 2006. Hydrothermally fluoritized Ordovician carbonates as reservoir rocks in the Tazhong area, Central Tarim basim, NW China. Journal of Petroleum Geology, 29(1): 27-40

     

    Kaplan IR, Emery KO and Rittenberg SC. 1963. The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim. Cosmochim. Acta, 27: 297-331

     

    Kharaka YK, Gunter WD, Aggarwal PK, Perkins EH and Debraal JD. 1988. SOLMINEQ.88: A computer program for geochemical modeling of water-rock interactions. United States Geological Survey Water Investigation Report 88-4227, 420

     

    Krouse HR, Viau CA, Eliuk LS, Ueda A and Halas S. 1988. Chemical and isotopic evidence of thermochemical sulfate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature, 333: 415-419

     

    Li KK, Cai CF, Cai LL and Jiang L. 2010. Hydrothermal fluid activities and main controlling factors of deep reservoir development in the Lower Paleozoic of the Tahe oilfield. Petroleum Geology and Experiment, 32(1): 46-51(in Chinese with English abstract)

     

    Li KK, Cai CF, He H, Jiang L, Xiang L, Huang SJ and Zhang CM. 2011. Origin of paleo-fluids in the Ordovician carbonates in Tahe oilfield, Tarim Basin: Constraints from fluid inclusions and Sr, C and O isotopes. Geofluids, 11: 71-86

     

    Li Z, Huang SJ, Liu JQ, Cai CF, Li YJ, Li KK, Han YX and Zhao Y. 2010. Buried diagenesis, structurally controlled thermal-fluid process and their effect on Ordovician carbonate reservoirs in Tahe, Tarim Basin. Acta Sedimentologica Sinica, 28(5): 969-979(in Chinese with English abstract)

     

    Machel HG. 1992. Low-temperature and high-temperature origins of elemental sulfur in diagenetic environments. In: Wessel GR and Wimberly BH (eds.). Native Sulfur D Developments in Geology and Exploration. Society for Mining, Metallurgy, and Exploration, Littleton, CO, 3-22

     

    Machel HG, Krouse HR and Sassen R. 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10(4): 373-389

     

    Machel HG. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings: Old and new insights. Sedimentary Geology, 140: 143-175

     

    Meng XH, Zhang SN, Lin J, Tian J and Lu JP. 2009. Geochemical tracing of isotopic fluid of the Cambrian dolomite reservoir in Well Tashen 1. J. Mineral. Petrol., 29(4): 75-82(in Chinese with English abstract)

     

    Noth S. 1997. High H2S contents and other effects of thermochemichal sulfate reduction in deeply buried carbonate reservoirs: A review. Geol. Rundsch., 86: 275-287

     

    Ohmoto H and Rye RO. 1979. Isotopes of sulfur and carbon. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley, 509-565

     

    Orr WL. 1974. Changes in the sulfur content and isotopic ratios of sulfur during petroleum maturation: Study of Big Horn Basin Paleozoic oil. American Association of Petroleum Geologists Bulletin, 58: 2295-2318

     

    Orr W. 1977. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In: Campos R and Goni J (eds.). Advances in Organic Geochemistry. Madrid, Spain: Enadisma, 571-597

     

    Powell TG and Macqueen RW. 1984. Precipitation of sulfide ores and organic matter: Sulfate reactions at Pine Point, Canada. Science, 224: 63-66

     

    Qian YX. 2002. Chemical composition of fluid inclusions from the Lower Ordovician reservoirs in the Tahe oil field. Chinese Journal of Geology, 37(Suppl.): 22-28(in Chinese with English abstract)

     

    Wade WJ, Hanor JS and Sassen R. 1989. Controls on H2S concentration and hydrocarbon destruction in the eastern Smackover trend. Gulf Coast Assoc. Geol. Soc. Trans., 309-320

     

    Wang SY, Chen QL and Ma HQ. 2003. Burial corrasion of Lower Ordovician carbonate rocks and its influence of reservoirs in Tahe oilfield, Tarim Basin. Petroleum Geology & Experiment, 23(11): 557-561(in Chinese with English abstract)

     

    Worden RH and Smalley PC. 1996. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chem. Geol., 133: 157-171

     

    Worden RH, Smalley PC and Cross MM. 2000. The influences of rock fabric and mineralogy upon thermochemical sulfate reduction: Khuff Formation, Abu Dhabi. Journal of Sedimentary Research, 70: 1218-1229

     

    Worden RH and Smalley PC. 2001. H2S in North Sea oil fields: Importance of thermochemical sulphate reduction in clastic reservoirs. Water-rock Interaction, 1-2: 659-662

     

    Zhu GY, Zhang SC, Liang YB, Dai JX and Li J. 2005. Isotopic evidence of TSR origin for natural gas bearing high H2S contents within the Feixianguan Formation of the northeastern Sichuan Basin, southwestern China. Science in China (Series D), 48: 1960-1971

     

    Zhu GY, Zhang SC and Liang YB. 2007. Controlling factors and distribution law of H2S gas in Chinese marine carbonates. Chinese Sciences Bulletin, 52(9): 115-125(in Chinese)

  • 加载中

(3)

计量
  • 文章访问数:  5947
  • PDF下载数:  3840
  • 施引文献:  0
出版历程
收稿日期:  2011-07-17
修回日期:  2011-11-14
刊出日期:  2012-03-01

目录