岩土力学 ›› 2020, Vol. 41 ›› Issue (12): 4078-4086.doi: 10.16285/j.rsm.2020.0441

• 岩土工程研究 • 上一篇    下一篇

深井孤岛工作面巷道围岩采动应力分区演化特征

程利兴1, 2, 3,姜鹏飞2, 3, 4,杨建威1, 2, 3,朱阳涛5, 郑仰发2, 3,张镇2, 3, 4,李冰冰5   

  1. 1. 中国矿业大学(北京)能源与矿业学院,北京 100083;2. 天地科技股份有限公司开采设计事业部,北京 100013;3. 中煤科工开采研究院有限公司,北京 100013;4. 煤炭科学研究总院 煤炭资源高效开采与洁净利用国家重点实验室,北京 100013; 5. 中煤新集阜阳矿业有限公司,安徽 阜阳 236153
  • 收稿日期:2020-04-16 修回日期:2020-06-14 出版日期:2020-12-11 发布日期:2021-01-18
  • 作者简介:程利兴,男,1987年生,博士研究生,主要从事煤矿巷道矿山压力及其岩层控制方面的研究。
  • 基金资助:
    国家重点研发计划(No.2017YFC0603003);国家自然科学基金青年基金项目(No.51704160);国家自然科学基金面上项目(No.51774186)。

Evolution characteristics of mining-induced stress partition of roadway surrounding rock on working face of deep island

CHENG Li-xing1, 2, 3, JIANG Peng-fei2, 3, 4, YANG Jian-wei1, 2, 3, ZHU Yang-tao5, ZHENG Yang-fa2, 3, ZHANG Zhen2, 3, 4, LI Bing-bing5   

  1. 1. School of Energy and Mining Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; 2. Coal Mining and Designing Department, Tiandi Science and Technology Co., Ltd., Beijing 100013, China; 3. Coal Ming Research Institute Co., Ltd of CCTEG, Beijing 100013, China; 4. State Key Laboratory of Coal Mining and Clean Utilization, China Coal Research Institute, Beijing 100013, China; 5. Fuyang Mining Company Limited, China Coal Xinji Energy, Fuyang, Anhui 236153, China
  • Received:2020-04-16 Revised:2020-06-14 Online:2020-12-11 Published:2021-01-18
  • Supported by:
    This work was supported by the National Key R&D Program of China(2017YFC0603003), the Young Scholars of National Natural Science Foundation of China(51704160) and the General Program of National Natural Science Foundation of China(51774186).

摘要: 针对深井孤岛工作面煤巷大变形问题,采用现场实测手段研究了回采过程中巷道和采空区应力动态演化规律以及巷道围岩变形破坏演化特征。研究结果表明:深井孤岛工作面巷道围岩应力演化与变形破坏具有显著的阶段性特征,工作面前方大于250 m范围,巷道围岩未受采动影响,围岩应力变化较小且变形主要集中在底板与煤柱肩窝;工作面前方100~250 m支护结构受力增大,巷道浅部围岩破碎,顶底板移近及煤柱内挤变形突出,巷道出现明显的非对称变形破坏;工作面前方100 m为强烈采动影响阶段,尤其是在工作面前方20~22 m围岩垂直应力与空间主应力变化比较剧烈,顶底板移近与两帮内挤变形更加突出,巷道围岩表现出明显的大变形破坏特征。根据采空区应力分区特征分析了顶板覆岩结构的动态演化过程。结合应力与变形破坏演化特征,提出了巷道支护对策,以期为深井巷道围岩控制提供一定指导。

关键词: 千米深井, 覆岩结构, 大变形, 应力演化, 孤岛工作面

Abstract: Aiming at large deformation of roadway on working face of deep island mining, the dynamic evolution law of the stress in roadway surrounding rock and goaf are studied by means of field measurement, and the evolution characteristics of deformation and failure of surrounding rock are analyzed. The results show that the stress evolution and deformation failure of surrounding rock on working face of deep island mining have obvious stage characteristics, when the distance from the working face is more than 250 m, the surrounding rock of the roadway is not affected by mining, so the stress of surrounding rock changes little, and the deformation is mainly concentrated in floor and coal pillar. The stress of the supporting structure is increased obviously in the range of 100?250 m in front of the working face, the shallow surrounding rock of the roadway is broken, and the coal pillar is squeezed and deformed, which causes the roadway to appear the obvious asymmetric deformation and failure. In the range of 100 m in front of the working face, the stage of strong mining influence occurs, especially in the range of 20?22 m in front of the working face, the vertical stress and space principal stress of the surrounding rock change more significantly, the roof and floor moving closer and the both sides of roadway deformation more prominent, which make the surrounding rock of the roadway shows obvious large deformation and failure characteristics. According to the characteristics of stress zoning in goaf, the dynamic evolution process of the covering rock structure is analyzed. Combined with the evolution characteristics of stress and deformation, the reform suggestions of roadway support are proposed to provide some guidance for the control technology of roadway surrounding rock in deep mine.

Key words: coal mines with depth more than 1 000 m, overlying strata spatial structure, large deformation, stress evolution, island working face

中图分类号: 

  • TU457
[1] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[2] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[3] 张传庆, 吕浩安, 刘小岩, 周辉, 高阳, 闫东明, . 隧道新型恒阻让压装置的工作机制研究[J]. 岩土力学, 2020, 41(12): 4045-4053.
[4] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[5] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[6] 蒲诃夫, 宋丁豹, 郑俊杰, 周 洋, 闫 婧, 李展毅. 饱和软土大变形非线性自重固结模型[J]. 岩土力学, 2019, 40(5): 1683-1692.
[7] 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720.
[8] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[9] 刘泉声, 邓鹏海, 毕晨, 李伟伟, 刘军, . 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆 加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083.
[10] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[11] 杨忠民,高永涛,吴顺川,成子桥,. 基于收敛–约束原理的大变形隧道初支更换时机优化研究[J]. , 2018, 39(S1): 395-404.
[12] 周亚东,邓 安,鹿 群, . 非饱和土一维大变形固结模型[J]. , 2018, 39(5): 1675-1682.
[13] 李传勋,董兴泉,金丹丹,王玉林,. 考虑起始坡降双层地基的大应变非线性固结[J]. , 2018, 39(5): 1877-1884.
[14] 唐宇峰,施富强,廖学燕,周 帅, . 基于光滑粒子流体动力学的流动法则对土体滑坡大变形的影响探讨[J]. , 2018, 39(4): 1509-1516.
[15] 杨忠民, 高永涛, 吴顺川, 周 喻, . 隧道大变形机制及处治关键技术模型试验研究[J]. 岩土力学, 2018, 39(12): 4482-4492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[2] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[3] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 杜佐龙,黄茂松,李 早. 基于地层损失比的隧道开挖对临近群桩影响的DCM方法[J]. , 2009, 30(10): 3043 -3047 .
[6] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[7] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[8] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[9] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[10] 朱珍德,李道伟,蒋志坚,刘金辉,杨永杰. 温度循环作用下深埋隧洞围岩细观结构的定量描述[J]. , 2009, 30(11): 3237 -3241 .