• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶作用时间尺度与碳汇稳定性

章程

章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368-371. doi: 10.3969/j.issn.1001-4810.2011.04.003
引用本文: 章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368-371. doi: 10.3969/j.issn.1001-4810.2011.04.003
Zhang Cheng. Time-scale of karst processes and the carbon sink stability[J]. CARSOLOGICA SINICA, 2011, 30(4): 368-371. doi: 10.3969/j.issn.1001-4810.2011.04.003
Citation: Zhang Cheng. Time-scale of karst processes and the carbon sink stability[J]. CARSOLOGICA SINICA, 2011, 30(4): 368-371. doi: 10.3969/j.issn.1001-4810.2011.04.003

岩溶作用时间尺度与碳汇稳定性

doi: 10.3969/j.issn.1001-4810.2011.04.003
基金项目: 国土资源部公益性行业科研专项基金(201111022)、IGCP/SIDA598项目和中国地质调查局地质调查项目(水[2010]矿评03-07-01)

Time-scale of karst processes and the carbon sink stability

  • 摘要: 从碳酸盐溶蚀快速动力学过程、岩溶动力系统的开放性、环境敏感性和生物参与性等方面分析了岩溶作用过程的时间尺度及其碳汇稳定性,指出岩溶碳循环是一种兼具不同时间尺度的特殊地质作用过程,因水生植物和土地利用变化的影响,碳汇效应显著且相对稳定,仍对现今大气CO2减排有重要意义。为更好地估算岩溶碳汇潜力,在加强高精度自动化监测的同时,需要考虑外源水、水生植物及土地利用变化等因素。

     

  • [1] Jiang Z, Yuan D. CO2 Source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22: 33-35.
    [2] Yuan D. The carbon cycle in karst[J]. Z. Geomorph. N.F, Suppl. –Bd. 1997, 108: 91-102.
    [3] Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environ Geol., 2000, 39: 1053-1058.
    [4] 袁道先.碳循环与全球岩溶[J].第四纪研究,1993,1:1-6.
    [5] 袁道先,刘再华,林玉石,等.中国岩溶动力系统[M].北京:地质出版社,2002,39-42.
    [6] Li W, Yu L J, Yuan D X, et al. Bacteria biomass and carbonic anhydrase activity in some karst areas of southwest China[J]. Journal of Asian Earth Sciences, 2004, 24: 145-152.
    [7] 李恩香,蒋忠诚,曹建华,等.广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀速率对比研究[J].生态学报,2004,24(6):1131-1139.
    [8] 章程,袁道先.IGCP448:岩溶生态系统全球对比研究进展[J].中国岩溶,2005,24(1):83-88.
    [9] Zhang Cheng,Yuan Daoxian,Cao Jianhua. Analysis on the environmental sensitivities of typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology. 2005, 47(5): 615-619.
    [10] 袁道先.地质作用与碳循环研究的回顾和展望[J].科学通报,2011,56(26):2157.
    [11] Mackenzie F T, Mackenzie J A. Our changing planet, an introduction to earth system science and global environmental change[M]. Prentice Hall, 1995, 1-292.
    [12] Merkel B J, Planer-Friedrich B. Groundwater geochemistry[M]. Berlin Heideberg: Springer-Verlag, 2005, 1-200.
    [13] Ford D C, William P W. Karst hydrogeology and geomorphology[M]. Chichester: John Willy & Sons, 2007, 1-562.
    [14] 刘再华,袁道先.我国典型表层岩溶系统的地球化学动态特征及其环境意义[J].地质论评,2000,46:324-327.
    [15] Liu Z, Groves C, Yuan D, et al. South China karst Aquifer Storm-scale Hydrogeochemistry[J]. Ground Water, 2004, 42: 491-499.
    [16] 章程.不同土地利用土下溶蚀速率季节差异及其影响因素[J].地质论评,2010,56:136-140.
    [17] 潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程[J].中国岩溶,1999,18(4):287-295.
    [18] 潘根兴,曹建华,何师意,等.桂林丫吉岩溶试验场岩溶土壤碳转移与水排碳作用[J].自然科学进展,2001,11(7):704-709.
    [19] Yuan Daoxian. Contribution of IGCP379 “Karst Processes and Carbon Cycle”to global change. Episodes, 1998, 21 (3) : 198.
    [20] 袁道先,蒋忠诚.IGCP379“岩溶作用与碳循环”在中国的研究进展[J].水文地质工程地质,2000,27(1):49-51.
    [21] Yuan Daoxian, Zhang Cheng. karst processes and the carbon cycle, final report of IGCP 379[M]. Beijing: Geological Publishing House, 2002, 1-220.
    [22] 章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报,2011,56(26):2174-2180.
    [23] Simonsen J F, Harremo?s P. Oxygen and pH fluctuations in rivers[J]. Water Research, 1978, 12, 477-489.
    [24] Langmuir D. Aqueous Environmental Chemistry[M]. Prentice-Hall, Inc., New Jersey, 1997.
    [25] Spiro B, Pentecost A. One day in the life of a stream - a diurnal inorganic carbon mass balance for travertine-depositing stream (Waterfall Beck, Yorkshire)[J]. Geomicrobiology Journal, 1991, 9, 1-11.
    [26] Hartley A M, House W A, Leadbeater B S C, et al. The use of microelectrodes to study the precipitation of calcite upon algal biofilms[J]. Journal of Colloid and Interface Science, 1996, 183, 498-505.
    [27] Guasch H, Armengol J, Martí E, et al. Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams[J]. Water Research 32, 1998, 1067-1074.
    [28] Liu Z, Liu X, Liao C. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: insights from high time-resolution monitoring of physico-chemistry of water[J]. Environmental Geology, 2008, 55, 1159-1168.
    [29] Cicerone D S, Stewart A J, Roh Y. Diel cycles in calcite production and dissolution in a eutrophic basin[J]. Environmental Toxicology and Chemistry, 1999, 18:2169-2177.
    [30] Montety V de, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283: 31-43.
    [31] Adamczyk K, Premont-Schwarz M, Pines D, et al. Real-time observation of carbonic acid formation in aqueous solution[J]. Science, 2009, 326: 1690-1694.
    [32] Zhang Z C, Lian B, Hou W G, et al. Bacillus mucilaginosus can capture atmospheric CO2 by carbonic anhydrase[J]. Afr J Microbiol Res., 2011, 5: 106-112.
    [33] 连宾,袁道先,刘再华.岩溶生态系统中微生物对岩溶作用影响的认识[J].科学通报,2011,56(26):2158-2161.
    [34] Julian M, Martin J, Nicod J. Les karsts Mediterraneens[J]. Mediterranee, 1978, 1-2, 115-131.
  • 加载中
计量
  • 文章访问数:  2293
  • HTML浏览量:  378
  • PDF下载量:  1992
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-08
  • 发布日期:  2011-12-25

目录

    /

    返回文章
    返回