超高压变质作用不同阶段的流体变化:碧溪岭榴辉岩的氢、硼同位素分析

夏群科 盛英明 Etienne DELOULE. 超高压变质作用不同阶段的流体变化:碧溪岭榴辉岩的氢、硼同位素分析[J]. 岩石学报, 2004, 20(3): 677-684.
引用本文: 夏群科 盛英明 Etienne DELOULE. 超高压变质作用不同阶段的流体变化:碧溪岭榴辉岩的氢、硼同位素分析[J]. 岩石学报, 2004, 20(3): 677-684.
XIA Qunke,Sheng Yinming,Etienne DEL0ULE School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China CRPG-CNRS,BP20,54501 Vandoeuvre Cedex,France. Fluid evolution of different stages during UHP metamorphism: evidence from hydrogen and boron isotope compositions of Bixiling eclogite from Dabieshan[J]. Acta Petrologica Sinica, 2004, 20(3): 677-684.
Citation: XIA Qunke,Sheng Yinming,Etienne DEL0ULE School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China CRPG-CNRS,BP20,54501 Vandoeuvre Cedex,France. Fluid evolution of different stages during UHP metamorphism: evidence from hydrogen and boron isotope compositions of Bixiling eclogite from Dabieshan[J]. Acta Petrologica Sinica, 2004, 20(3): 677-684.

超高压变质作用不同阶段的流体变化:碧溪岭榴辉岩的氢、硼同位素分析

  • 基金项目:

    国家自然科学基金(40172027)

Fluid evolution of different stages during UHP metamorphism: evidence from hydrogen and boron isotope compositions of Bixiling eclogite from Dabieshan

  • 大别山碧溪岭榴辉岩中有三种含水矿物:多硅白云母、角闪石和黑云母,它们分别是超高压(UHP)阶段(即柯石英榴辉岩相阶段)或者石英榴辉岩相阶段、退变质后成合晶阶段和角闪岩相退变质阶段的产物,本文利用离子探针技术对它们进行了氢同位素和硼同位素的分析。三种矿物内部的同位素组成都是均一的,多硅白云母的δD为-105‰±9‰,δ~(11)B为-25.9‰±2.0‰;角闪石的δD为-100‰±9‰,δ~(11)B为-24.4‰±0.9‰;黑云母的δD为-65‰±4‰,δ~(11)B为-19.3‰±1.3‰。多硅白云母和角闪石的氢-硼同位素组成在误差范围内是相同的,而和黑云母则有明显的差别,这表明,从UHP阶段或者石英榴辉岩相阶段到随后的后成合晶阶段,变质流体是内部缓冲的,而在角闪岩相变质阶段,则有了外来流体的加入,这个流体是相对富集D和~(11)B的。碧溪岭榴辉岩矿物相对于其地壳原岩表现出低δ~(11)B的特征,说明俯冲过程中板块经历了强烈的脱硼。
  • 加载中
  • [1]

    [1]Baker J, Mattews A, Mattey D, et al. 1997. Fluid-rock interactions during ultra-high pressure metamorphism, Dabieshan, China.Geochim. Cosmochim. Acta, 61: 1685 - 1696

    [2]

    [2]Benton L D, Ryan J G, Tera F. 2001. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett. , 187:273 -282

    [3]

    [3]Chaussidon M, Albarede F. 1992. Secular boron isotope in thecontinental crust: an ion microprobe study. Earth Planet. Sci.Lett. , 108:229-241

    [4]

    [4]Chanssidon M, Jambon A. 1994. Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications.Earth Planet. Sci. Lett. , 121: 277 -291

    [5]

    [5]Chaussidon M, Marty B. 1995. Primitive boron isotope composition of the mantle. Science, 269:383-386

    [6]

    [6]Chaussidon M, Robert F, Mangin D, et al. 1997. Analytical procedures for the measurement of boron isotope by ion microprobe in meteorites and mantle rocks. Geostandards Newsletter, 21: 7 - 17

    [7]

    [7]Cong B L, Zhai M G, Carswell D A, et al. 1995. Petrogenesis of ultrahigh-pressure rocks and their country rocks at Shuanghe in Dabieshan, Central China. European Journal of Mineralogy, 7:119- 138

    [8]

    [8]Deloule E, France-Lanord C, and Albarede F. 1991a. D/H analysis of minerals by ion probe, in: "Stable Isotope Geochemistry: A Tribute to Samuel Epstein" edited by H. P. Taylor, J. R. O\'Neil and I. R.Kaplan, The Geochemical Society Special Publication No. 3, pp 53-62

    [9]

    [9]Deloule E, Albarede F, and Sheppard S M F. 1991b. Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth and Planetary Science Letters, 105,543 - 553.

    [10]

    [10]Fu B, Zheng Y-F, Wang Z-R et al. 1999. Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contrib. Mineral. Petrol. ,134, 52-66.

    [11]

    [11]Fu B, Touret J L R, Zheng Y-F. 2001. Fluid inclusions in coesitebearing eclogites and jadeite quartzite at Shuanghe, Dabieshan,China. J. Metamor. Geol. , 19:529-545

    [12]

    [12]Graham C M, Harmon R S, and Sheppard S M F. 1984. Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. American Mineralogist, 69: 128 - 138.

    [13]

    [13]Gurenko A, Chaussidon M. 1997. Boron concentrations and isotopic compositions in the Icelandic mantle: evidence from glass inclusions in olivine. Chem. Geol., 135:21-35

    [14]

    [14]Hemming N G, Reeder R J, Hanson G N. 1995. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim. Cosmochim. Acta, 59:371-379

    [15]

    [15]Hervig R L, Moore G M, Williams L B, et al. 2002. Isotopic and elemental partitioning of boron between hydrous fluids and silicate melt. Am. Mineral. , 87: 769- 774

    [16]

    [16]Ishikawa T, Nakamura E. 1993. Boron isotope systematics of marine sediments. Earth Planet. Sci. Lett., 117:567-580

    [17]

    [17]Ishikawa T, Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370:205 - 208

    [18]

    [18]Ishikawa T, Tera F. 1997. Source, composition and distribution of the fluid in the Kurile mantle wedge: constraints from across-arc variations of B/Nb and B isotopes. Earth Planet. Sci. Lett., 152:123 - 138

    [19]

    [19]Ishikawa T, Tera F. 1999. Two isotopoically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr,Nd, and Pb isotope systematics. Geology, 27:83 -86

    [20]

    [20]Kakihana H, Kotaka M, Satoh S, et al. 1977. Fundamental studies on the ion-exchange separation of boron isotopes. Bull. Chem. Soc.Japan, 50: 158 - 163

    [21]

    [21]Kasemann Simone, Erzinger J, Franz G. 2000. Boron recycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina. Contrib. Mineral. Petrol. , 140:328 -343

    [22]

    [22]Kuroda Y, Suzuki T, and Matsuo S. 1977. Hydrogen isotope composition of deep-seated water. Contributions to Mineralogy and Petrology, 60,311 -315.

    [23]

    [23]Kyser T K, O\'Neil J R. 1984. Hydrogen isotopes systematics of submarine basalts. Geochimica et Cosmochimica Acta, 48, 2123 - 2133.

    [24]

    [24]Kyser T K. 1986. Stable isotope variations in the mantle, in: "Stable isotopes in high temperature geological processes" edited by J. W.Valley, H. P. Taylor and J. R. O′ Neil, Reviews in Mineralogy,Mineralogical Society of America ( Washington D C ), Vol. 16, pp 141 - 164.

    [25]

    [25]Miller J A, Buick I S, Cartwright I, et al. 2002. Fluid processes during the exhumation of high-P metamorphic belts. Mineral. Mag. , 66:93 - 119

    [26]

    [26]Oi T, Nomura M, Musashi M, et al. 1989. Boron isotopic composition of some boron minerals. Geochim. Cosmochim. Acta, 53: 3189- 3195

    [27]

    [27]Oi T, Kato J, Ossaka T, et al. 1991. Boron isotopic fractionation accompanying boron mineral formation from aqueous boric acidsodium hydroxide solutions at 25℃. Geochem. J. , 25:377 -385

    [28]

    [28]Palmer M R, Spivack A J, Edmond J M. 1987. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim. Cosmochim. Acta, 51:2319-2323

    [29]

    [29]Palmer M R, London D, Morgan G B, et al. 1992. Experimental determination of fractionation of 11 B/10B between toumaline and aqueous vapor: a temperature- and pressure-dependent isotopic system. Chem. Geol. , 101: 123 - 129

    [30]

    [30]Palmer M R, Swihart G H. 1996. Boron isotope geochemistry: an overview. In: Grew E S and Anovitz L M, (eds.) Boron:Mineralogy, Petrology and Geochemistry, Rev. Mineral. , 33:709- 744

    [31]

    [31]Peacock S M, Hervig R. 1999. Boron isotopic composition of subductionzone metamorphic rocks. Chem. Geol. , 160:281 -290

    [32]

    [32]Philippot P, Rumble D. 2000. Fluid-rock interactions during highpressure and ultrahigh-pressure metamorphism. International Geology Review, 42: 312 - 327

    [33]

    [33]Rose E F, Shimizu N, Layne G D, et al. 2001. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. Science,293: 281 -283

    [34]

    [34]Rumble D. 1998. Stable isotope geochemistry of ultrahigh-pressure rocks.In: When Continents Collide: Geodynamics of Ultrahigh-Pressure Rocks (eds. Hacker B R and Liou J G). Kluwer Academic Publishers, Amsterdam, P. 241 - 259

    [35]

    [35]Rumble D, Yui T F. 1998. The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim.Cosmochim. Acta, 62:3307-3321

    [36]

    [36]Rumble D, Wang Q C, Zhang R Y. 2000. Stable isotope geochemistry of marbles from the coesite UHP terrains of Dabiehsan and Sulu,China. Lithos, 52: 79 -95

    [37]

    [37]Smith H J, Spivack A J, Staudigel H, et al. 1995. The boron isotopic composition of altered oceanic crust. Chem. Geol. , 126:119 - 135

    [38]

    [38]Smith H J, Leeman W P, Davidson J, et al. 1997. The B isotopic composition of arc lavas from Martinique, Lesser Antilles. Earth Planet. Sci. Lett. , 146:303-314

    [39]

    [39]Spivack A J, Edmond J M. 1987. Boron isotope exchange between seawater and the ocean crust. Geochim. Cosmochim. Acta, 51:1033 - 1044

    [40]

    [40]Straub S M, Layne G D. 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth Planet. Sci. Lett. , 198:25 -39

    [41]

    [41]Suzuki T, Epstein S. 1976. Hydrogen isotope fractionation between OHbearing minerals and water. Geochimica et Cosmochimica Acta, 40,1229 - 1240

    [42]

    [42]Williams L B, Hervig R L, Holloway J R, Hutcheon I. 2000. Boron isotope geochemistry during diagenesis. Part I. Experimental determination of fractionation during ittitization of smectite.Geochim. Cosmochim. Acta, 65:1769-1782

    [43]

    [43]Xiao Y L, Hoefs J, van den Kerkhof, et al. 2000. Fluid history of UHP metamorphism in the Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling.Contrib. Mineral. Petrol. , 139: 1 - 16

    [44]

    [44]Xiao Y L, Hoefs J, van den Kerkhof, et al. 2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: constraints from mineral chemistry, fluid inclusions and stable isotopes. J. Petrol.,43: 1505 - 1527

    [45]

    [45]Yui T F, Rumble D, Chen C H, et al. 1997. Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, central-east China. Chem. Geol. , 137: 135 - 147

    [46]

    [46]Zheng Y F, Fu B, Li Y L, et al. 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth Planet. Sci. Lett. , 155:113 -129

    [47]

    [47]Zheng Y-F, Fu B, Xiao Y-L et al. 1999. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and postUHP metamorphism in the Dabie Mountains. Lithos, 46, 677 -693.

    [48]

    [48]Zheng Y F, Gong B, Li Y L, et al. 2000. Carbon concentrations and isotopic ratios of eclogites from the Dabie and Sulu terranes in China.Chem. Geol. , 168:291 -305

    [49]

    [49]Zheng Y F, Fu B, Gong B, et al. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogenic belt: implications for geodynamics and fluid regimes. Earth Science Review, in press.

  • 加载中
计量
  • 文章访问数:  5991
  • PDF下载数:  5807
  • 施引文献:  0
出版历程
修回日期:  2003-04-28
刊出日期:  2004-05-31

目录