藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用

戚学祥,李天福,孟祥金,于春林. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J]. 岩石学报, 2008, 24(7).
引用本文: 戚学祥,李天福,孟祥金,于春林. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J]. 岩石学报, 2008, 24(7).
QI XueXiang,LI TianFu,MENG XiangJin,YU ChunLin. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fanit-fold belt in southern Tibet, and its consraint on antimony-gold polymetallic minerogenesis[J]. Acta Petrologica Sinica, 2008, 24(7).
Citation: QI XueXiang,LI TianFu,MENG XiangJin,YU ChunLin. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fanit-fold belt in southern Tibet, and its consraint on antimony-gold polymetallic minerogenesis[J]. Acta Petrologica Sinica, 2008, 24(7).

藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用

  • 基金项目:

    中国地质调查局科研项目,中国地质科学院实验室基金

Cenozoic tectonic evolution of the Tethyan Himalayan foreland fanit-fold belt in southern Tibet, and its consraint on antimony-gold polymetallic minerogenesis

  • 特提斯喜马拉雅前陆断褶带由近东西向展布的藏南拆离系主拆离带和洛扎、绒布-哲古两条断裂带及一系列倒转复式褶皱组成,是始喜马拉雅期印度板块与欧亚大陆发生大规模陆-陆碰撞,导致特提斯喜马拉雅前陆盆地发生大规模缩短、沉积盖层以藏南拆离系为底界自北向南大规模逆冲推覆、褶皱,以及新喜马拉雅期高喜马拉雅结晶岩系自北向南挤出导致藏南拆离系主拆离带和洛扎、哲古两条次级构造带上盘地层自南向北伸展的产物.特提斯喜马拉雅前陆断褶带内的锑金多金属矿床在空间上具有明显的分带性,自北向南依次构成沙拉岗-查拉普锑金成矿带、错美-隆子锑铅锌多金属成矿带和拉康-错那银铅锌成矿带,其间分别以绒布-哲古和洛扎两个次级断裂带为界.矿体主要受褶皱翼部近东西向层间破碎带和近南北向构造带控制,成矿类型为浅成低温热液型,成矿时代为新喜马拉雅期.成矿作用与新生代构造演化和新喜马拉雅期岩浆活动关系密切.在新喜马拉雅期高喜马拉雅结晶岩系向南挤出过程中,特提斯喜马拉雅前陆断褶带沿着始喜马拉雅期形成的逆冲推覆构造带发生自南向北伸展,诱发地壳部分熔融,形成的岩浆沿构造带侵位,并促使沿构造带下渗地下水循环对流.当这些循环的地下水与沿构造带上升的岩浆期后含矿热液混合时,成矿流体的物理化学条件发生改变,成矿物质沉淀形成沿褶皱翼部近东西向层间破碎带和近南北向构造带分布的似层状、脉状和透镜状锑金多金属矿床.
  • 加载中
  • [1]

    Bian QT and Ding L. 2006. Discovery of the Zhegucuo Au (As) -bearing fine granular quartz diorite in the Himalayan belt and its significance. Acta Petrologica Sinica,22(4) : 977 -988(in Chinese with English abstract)

    [2]

    Burchfiel BC, Zgi EC, Hodges KV, et al. 1992. The South Tibetan detachment system, Himlayan orogen: Extension contemporaneous with and parallel to shorting in a collisional mountain belt. Geological Society of American Special Paper,269:41

    [3]

    Debon R,Le Fort P, Sheppart S,et al. 1986. The four plutonic belts of the Transhimalaya-Himalayas : A chemical, mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section. Petrology, 27: 219 -250

    [4]

    DeCelles PG, Robinson DM, Quade J, et al. 2001. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics,20 : 487 - 509

    [5]

    Edwards M and Harrison TM. 1997. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th- Pb monazite dating of the Khula Kangri granite. Geology, 25 : 543 - 546

    [6]

    Fu W, Zhou YZ, Yang ZJ, et al. 2005. Characteristics of muhi-horizon ore-bearing formations in southern Tibet Au-Sb metallogenic belt and its controlling factors. Geotectonica Et Metallogenia, 29(3) : 321 - 327 (in Chinese with English abstract)

    [7]

    Garzanti E. 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences, 17 : 805 - 827

    [8]

    Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112 (3) : 324 - 350

    [9]

    Jiang SH, Nie FJ, Hu P and Liu Y. 2006. A important event for Neotethyan ocean in lately Jurassic-early Cretaceous: Evidence from zircon SHRIMP U-Pb dating for diabase in Langkazi, southern Tibet. Acta Geologica Sinica, 80:1130 (in Chinese with English abstract)

    [10]

    LeFort P. 1975. Himalayas-collided range-present knowledge of continental arc. American Journal of Science, A275 : 1 - 44

    [11]

    Li JG, Wang HQ, Den HM, et al. 2001. The controls of the host basins on ore-forming elements from the Sedex deposits in Xizang. Sedimentary Geology and Tethyan Geology, 21 (4) : 11 - 20 ( in Chinese with English abstract)

    [12]

    Li JG, Wang HQ, Chen JK, et al. 2002. Study of metallogenic and prospecting models for the Shalagang antimony deposit, Gyangze, Tibet. Journal of Chengdu Uiversity of Technology, 29 ( 5 ) : 533 - 538 (in Chinese with English abstract)

    [13]

    Liu G and Einsele G. 1994. Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geologische Rundschau,82:32-61

    [14]

    Mo XX, Zhao ZD, Zhou S, et al. 2002. Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet. EOS Trans, 83:47

    [15]

    Neumayer J, Wisemayr G, Janda C and Grasemann B. 2004. Eohimalayan fold and thrust belt in the NW-Himalaya (Lingti-Pin Vallleys): Shortening and depth to detachment calculation. Austrian Journal of Earth Sciences ,95 : 28 - 36

    [16]

    Nie FJ, Hu Peng, Jiang SH, et al. 2005. Type and temporal-spatial distribution of gold and antimony deposits (prospects) in southern Tibet, China. Aeta C, eologica Sinica, 79 ( 3 ) : 373 - 385 ( in Chinese with English abstract)

    [17]

    Patel R C, Singh S, Asokan A, et al. 1993. Extensional tectonics in the Himalayan orogen, Zanskar, NW India. In: Treloar PJ and Searle MP (eds.). Himalayan Tectonics. The Geological Society Special Publication 74,265 - 276. 445 -459

    [18]

    Patriat P and Aehache J. 1984. India Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311:615 -621

    [19]

    Qi XX, Li TF and Yu CL. 2008. Rare earth element and trace element geochemistry of Shalagang antimony deposit in the southern Tibet and its tracing significance for the origin of metallogenic elements. Geoscience, 22(2) : 161 -172( in Chinese with English abstract)

    [20]

    Ratsohbacher L, Frisoh W, Liu G and Chen C. 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision. Journal of Geophysical Research,99 : 19817 - 19945

    [21]

    Robyr M, Vannay JC and Epard JL. 2002. Thrusting, extension, and doming during the polyphase tectonometamorphic evolution of the High Himalayan Crystalline Zone in NW India. Journal of Asian Earth Sciences, 21 : 221 -239

    [22]

    Searle MP and Godin L. 2003. The South Tibetan Detachment System and the Manaslu leucogranite: A structural re-interpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. Journal of Geology,111: 505 -523

    [23]

    Searle MP and Szulc AG. 2005. Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga-Darjeeling profile, Sikkim Himalaya. Journal of Asian Earth Sciences,25 : 173 -185

    [24]

    Searle MP, Parrish RR, Hodges KV, et al. 1997. Shisha Pangma leucogranite, South Tibetan Himalaya : Field relations, geochemistry, age, origin and emplacement. Journal of Geology, 105 : 295 - 317

    [25]

    Spratt JE, Jones AG, Nelson KD, et al. 2005. Crustal structure of the India-Asia collision zone, southern Tibet, from Indepth Mt investigations. Physics of the Earth and Planetary Interiors, 150:227 - 237

    [26]

    Wang J and Zhang J. 2001. Metallogenic characters and prospecting direction of the Mazala gold-antimony deposit, southern Tibet. Gold Geology, 7 ( 3 ) : 15 - 20 ( in Chinese with English abstract)

    [27]

    Wiesmayr G and Grasemann B. 2002. Eohimalayan fold and thrust belt: Implications for the geodynamic evolution of the NW Himalaya (India). Tectonics,2 : 1058

    [28]

    Xu ZQ, Yang JS, Jang M, et al. 1999. Continental subduetion and uplifting of the orogenic belts at the margin of the Qinghai-Tibet platau. Earth Science Frontiers, 6(3 ) : 139 - 151 ( in Chinese with English abstract)

    [29]

    Xu ZQ, Yang JS, Qi XX, et al. 2006. India-Asia collision: A further discussion of N-S- and E-W- trending detachments and the orogenic mechanism of the mnrden Himalayas. Geological Bulletin of China, 25 ( 1 - 2) : 1 - 14 ( in Chinese with English abstract)

    [30]

    Yang ZS, Hou ZQ, Gao W, et al. 2006. Metallogenic characteristics and genetic model of antimony and gold deposits in south Tibetan detachment system. Acta Geologica Sinica, 80 (9) : 1377 - 1391 ( in Chinese with English abstract)

    [31]

    Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews,76 : 1 - 131

    [32]

    Zhen YY, Duo J, Ma GT, et al. 2007. Mineralization characteristics, discovery and age restriction of Chalapn hardrock gold deposit,southern Tibet. Earth Science, 32 (2) :185 - 189 (in Chinese with English abstract)

    [33]

    Zhang JJ, Guo L and Zhang B. 2007. Structure and kinematics of the Yalashangbo dome in the northern Himalayan dome belt, China. Chinese Journal of Geology, 42 ( 1 ) : 16-30( in Chinese with English abstract )

  • 加载中
计量
  • 文章访问数:  7155
  • PDF下载数:  8136
  • 施引文献:  0
出版历程
刊出日期:  2008-07-31

目录