中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义

王力圆, 郑有业, 高顺宝, 李伟良, 毛荣威, 黄亮亮. 中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义[J]. 岩石学报, 2016, 32(5): 1543-1555.
引用本文: 王力圆, 郑有业, 高顺宝, 李伟良, 毛荣威, 黄亮亮. 中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义[J]. 岩石学报, 2016, 32(5): 1543-1555.
WANG LiYuan, ZHENG YouYe, GAO ShunBao, LI WeiLiang, MAO RongWei, HUANG LiangLiang. The discovery of the Early Cretaceous Zenong Group volcanic rocks and geological significance in Jiwa area in south of the Central Lhasa subterrane[J]. Acta Petrologica Sinica, 2016, 32(5): 1543-1555.
Citation: WANG LiYuan, ZHENG YouYe, GAO ShunBao, LI WeiLiang, MAO RongWei, HUANG LiangLiang. The discovery of the Early Cretaceous Zenong Group volcanic rocks and geological significance in Jiwa area in south of the Central Lhasa subterrane[J]. Acta Petrologica Sinica, 2016, 32(5): 1543-1555.

中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义

  • 基金项目:

    本文受中国地质调查局项目(1212011121250)和福州大学科研启动基金项目(510195)联合资助.

详细信息

The discovery of the Early Cretaceous Zenong Group volcanic rocks and geological significance in Jiwa area in south of the Central Lhasa subterrane

More Information
  • 西藏尼玛县吉瓦地区措勤-多瓦后陆拗陷带内分布的火山岩LA-ICP-MS锆石U-Pb年龄为120.3~126.5Ma左右,重新厘定为早白垩世则弄群,否定了前人归属为上新世乌郁群(N2wy)及始新世帕那组(E2p)的认识。岩石以酸性火山岩为主,中基性火山岩为辅,酸性岩类主要为火山碎屑岩类和熔岩类,典型岩石类型为流纹质熔结凝灰岩和流纹岩等,中基性岩主要为玄武安山岩,安山玄武岩等,杏仁构造普遍发育。研究区大量的流纹质熔结凝灰岩的出现反映了吉瓦地区的火山岩主要为陆相火山喷发形成。地球化学特征显示轻稀土富集,负Eu异常明显,富集K、Rb、Th、U等大离子亲石元素,相对亏损Nb、Ta、P、Ti等高场强元素。酸性火山岩具有A型花岗质岩浆岩特征,基性岩具有板内玄武岩亲缘性,这一特征可能与班公湖-怒江洋壳岩石圈南向俯冲过程中发生的板片断离有关。中部拉萨地体南侧早白垩世火山岩的发现,使班公湖-怒江洋壳南向俯冲在晚侏罗世-早白垩世的岩浆活动在原来的基础上向南延伸70~80km,火山岩地层时代的重新归位对研究冈底斯带早白垩世地球动力学背景及建立地质年代学格架提供了新的约束资料,具有重要的科学意义。吉瓦地区早白垩世则弄群火山岩可能受到了班公湖-怒江特提斯洋壳向南、雅鲁藏布江洋壳向北的双向俯冲制约。
  • 加载中
  • [1]

    Barazangi M and Ni J. 1982. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau: Possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology, 10(4): 179-185

    [2]

    Chen Y, Zhu DC, Zhao ZD, Meng FY, Wang Q, Santosh M, Wang LQ, Dong GC and Mo XX. 2014. Slab breakoff triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463

    [3]

    Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644

    [4]

    Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357

    [5]

    Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439

    [6]

    Hou ZQ, Zhao ZD, Gao YF, Yang ZM and Jiang W. 2006. Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet. Acta Petrologica Sinica, 22(4): 761-774 (in Chinese with English abstract)

    [7]

    Kang ZQ, Xu JF, Dong YH and Wang BQ. 2008. Cretaceous volcanic rocks of Zenong Group in north-middle Lhasa block: Products of southward subducting of the Slainajap ocean. Acta Petrologica Sinica, 24(2): 303-314 (in Chinese with English abstract)

    [8]

    Kapp P, Murphy MA, Yin A, Harrison TM, Ding L and Guo JR. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029, doi: 10.1029/2001TC001332

    [9]

    Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7): 865-878

    [10]

    Kapp P, DeCelles PG, Gehrels GE, Heizler M and Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917-932

    [11]

    King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391

    [12]

    Leier AL, DeCelles PG, Kapp P and Gehrels GE. 2007. Lower Cretaceous strata in the Lhasa terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. Journal of Sedimentary Research, 77(10): 809-825

    [13]

    Luo ZH, Mo XX, Hou ZQ, Deng WM, Wang JH, Zhao ZD, Yu XH and Li JP. 2006. An integrated model for the Cenozoic evolution of the Tibetan Plateau: Constraints from igneous rocks. Earth Science Frontiers, 13(4): 196-211 (in Chinese with English abstract)

    [14]

    Ma GL and Yue YH. 2010. Cretaceous volcanic rocks in northern Lhasa block: Constraints on the tectonic evolution of the gangdise arc. Acta Petrologica et Mineralogica, 29(5): 525-538 (in Chinese with English abstract)

    [15]

    McKenzie D and O'nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091

    [16]

    Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract)

    [17]

    Mo XX and Pan GT. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectonic-magmatic events. Earth Science Frontiers, 13(6): 43-51 (in Chinese with English abstract)

    [18]

    Mo XX. 2011. Magmatism and evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract)

    [19]

    Niu YL, O'hara MJ and Pearce JA. 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrological perspective. Journal of Petrology, 44(5): 851-866

    [20]

    Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract)

    [21]

    Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47

    [22]

    Tilmann F, Ni J and INDEPTH Ⅲ Seismic Team. 2003. Seismic imaging of the Downwelling Indian lithosphere beneath Central Tibet. Science, 300(5624): 1424-1427

    [23]

    van Hunen J and Allen MB. 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth and Planetary Science Letters, 302(1-2): 27-37

    [24]

    Wang YL, Zhang CJ and Xiu SZ. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract)

    [25]

    Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419

    [26]

    Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343

    [27]

    Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)

    [28]

    Zhang LL, Zhu DC, Zhao ZD, Liao ZL, Wang LQ and Mo XX. 2011. Early Cretaceous granitoids in Xainza, Tibet: Evidence of slab break-off. Acta Petrologica Sinica, 27(7): 1938-1948 (in Chinese with English abstract)

    [29]

    Zhao WJ, Liu K, Jiang ZT, Wu ZH, Zhao X, Shi DN, Xiong JY, Mechie J, Brown L, Hearn T, Guo JR and Haines SS. 2004. Bangong Co-Nujing suture zone, Tibet: A suggestion given by deep geophysical structure. Geological Bulletin of China, 23(7): 623-635 (in Chinese with English abstract)

    [30]

    Zhao ZD, Mo XX, Luo ZH, Zhou S, Dong GC, Wang LL and Zhang FQ. 2003. Subduction of india beneath Tibet: Magmatism evidence. Earth Science Frontiers, 10(3): 149-157 (in Chinese with English abstract)

    [31]

    Zhu DC, Pan GT, Mo XX, Wang LQ, Liao ZL, Zhao ZD, Dong GC and Zhou CY. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese: New insights from volcanic rocks. Acta Petrologica Sinica, 22(3): 534-546 (in Chinese with English abstract)

    [32]

    Zhu DC, Mo XX, Zhao ZD, Xu JF, Zhou CY, Sun CG, Wang LQ, Chen HH, Dong GC and Zhou S. 2008. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the gangdese, Tibet and tectonic significance. Acta Petrologica Sinica, 24(3): 401-412 (in Chinese with English abstract)

    [33]

    Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS and Wu FY. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312

    [34]

    Zhu DC, Mo XX, Zhao ZD, Niu YL, Pan GT, Wang LQ and Liao ZL. 2009. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: New perspective. Earth Science Frontiers, 16(2): 1-20 (in Chinese with English abstract)

    [35]

    Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. the Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255

    [36]

    Zhu DC, Zhao ZD, Niu YL, Dilek Y, Wang Q, Ji WH, Dong GC, Sui QL, Liu YS, Yuan HL and Mo XX. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290-308

    [37]

    Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454

    [38]

    Zhu TX, Zhuang ZG, Zhou MK, Pan ZX and Feng XT. 2006. New Ordovician-Paleogene tectonomagnetic data from the northern slope of the Himalayas. Geological Bulletin of China, 25(1-2): 76-82 (in Chinese with English abstract)

    [39]

    侯增谦, 赵志丹, 高永丰, 杨志明, 江万. 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山岩浆作用证据. 岩石学报, 22(4): 761-774

    [40]

    康志强, 许继峰, 董彦辉, 王保弟. 2008. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物. 岩石学报, 24(2): 303-314

    [41]

    罗照华, 莫宣学, 侯增谦, 邓万明, 王江海, 赵志丹, 喻学惠, 李建平. 2006. 青藏高原新生代形成演化的整合模型-来自火成岩的约束. 地学前缘, 13(4): 196-211

    [42]

    马国林, 岳雅慧. 2010. 西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约. 岩石矿物学杂志, 29(7): 525-538

    [43]

    莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148

    [44]

    莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43-51

    [45]

    莫宣学. 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367

    [46]

    潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533

    [47]

    汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421

    [48]

    吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238

    [49]

    张亮亮, 朱弟成, 赵志丹, 廖忠礼, 王立全, 莫宣学. 2011. 西藏申扎早白垩世花岗岩类: 板片断离的证据. 岩石学报, 27(7): 1938-1948

    [50]

    赵文津, 刘葵, 蒋忠惕, 吴珍汉, 赵逊, 史大年, 熊嘉育, Mechie J, Brown L, Hearn T, Guo JR, Haines SS. 2004. 西藏班公湖-怒江缝合带-深部地球物理结构给出的启示. 地质通报, 23(7): 623-635

    [51]

    赵志丹, 莫宣学, 罗照华, 周肃, 董国臣, 王亮亮, 张凤琴. 2003. 印度-亚洲俯冲带结构-岩浆作用证据. 地学前缘, 10(3): 149-157

    [52]

    朱弟成, 潘桂棠, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束. 岩石学报, 22(3): 534-546

    [53]

    朱弟成, 莫宣学, 赵志丹, 许继峰, 周长勇, 孙晨光, 王立全, 陈海红, 董国臣, 周肃. 2008. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义. 岩石学报, 24(3): 401-412

    [54]

    朱弟成, 莫宣学, 赵志丹, 牛耀龄, 潘桂棠, 王立全, 廖忠礼. 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点. 地学前缘, 16(2): 1-20

    [55]

    朱同兴, 庄忠海, 周铭魁, 潘忠习, 冯心涛. 2006. 喜马拉雅山北坡奥陶纪-古近纪构造古地磁新数据. 地质通报, 25(1-2): 76-82

  • 加载中
计量
  • 文章访问数:  4733
  • PDF下载数:  4968
  • 施引文献:  0
出版历程
收稿日期:  2014-12-05
修回日期:  2015-10-08
刊出日期:  2016-05-31

目录