Advanced Search
Article Contents

Intercomparison of Precipitation Simulated by Regional Climate Models over East Asia in 1997 and 1998


doi: 10.1007/s00376-007-0539-2

  • Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS. The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing.
  • [1] Li Xingsheng, Zhou Jianqiang, Li Zhe, Fang Xiumei, He Zhuanshi, Farn Parungo, 1998: A Numerical Simulation of “5.5” Super-Duststorm in Northern China, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 63-73.  doi: 10.1007/s00376-998-0018-4
    [2] Suk-Jin CHOI, Dong-Kyou LEE, 2016: Impact of Spectral Nudging on the Downscaling of Tropical Cyclones in Regional Climate Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 730-742.  doi: 10.1007/s00376-016-5061-y
    [3] WANG Hanjie, SHI Weilai, CHEN Xiaohong, 2006: The Statistical Significance Test of Regional Climate Change Caused by Land Use and Land Cover Variation in West China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 355-364.  doi: 10.1007/s00376-006-0355-0
    [4] CUI Xuefeng, HUANG Gang, CHEN Wen, 2008: Notes of Numerical Simulation of Summer Rainfall in China with a Regional Climate Model REMO, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 999-1008.  doi: 10.1007/s00376-008-0999-z
    [5] Peihua QIN, Zhenghui XIE, Jing ZOU, Shuang LIU, Si CHEN, 2021: Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 460-479.  doi: 10.1007/s00376-020-0141-4
    [6] Yating ZHAO, Ming XUE, Jing JIANG, Xiao-Ming HU, Anning HUANG, 2024: Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 619-638.  doi: 10.1007/s00376-023-2353-x
    [7] Wei Helin, Wang Wei-Chyung, 1998: A Regional Climate Model Simulation of Summer Monsoon over East Asia: A Case Study of 1991 Flood in Yangtze-Huai River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 489-509.  doi: 10.1007/s00376-998-0027-3
    [8] WANG Geli, YANG Peicai, LU Daren, 2004: On Spatiotemporal Series Analysis and Its Application to Predict the Regional Short Term Climate Process, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 296-299.  doi: 10.1007/BF02915717
    [9] Song YANG, WEN Min, Rongqian YANG, Wayne HIGGINS, ZHANG Renhe, 2011: Impacts of Land Process on the Onset and Evolution of Asian Summer Monsoon in the NCEP Climate Forecast System, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1301-1317.  doi: 10.1007/s00376-011-0167-8
    [10] Gao Xuejie, Zhao Zongci, Filippo Giorgi, 2002: Changes of Extreme Events in Regional Climate Simulations over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 927-942.  doi: 10.1007/s00376-002-0056-2
    [11] Rui WANG, Yiting ZHU, Fengxue QIAO, Xin-Zhong LIANG, Han ZHANG, Yang DING, 2021: High-resolution Simulation of an Extreme Heavy Rainfall Event in Shanghai Using the Weather Research and Forecasting Model: Sensitivity to Planetary Boundary Layer Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 98-115.  doi: 10.1007/s00376-020-9255-y
    [12] XU Ying, GAO Xuejie, F. GIORGI, 2009: Regional Variability of Climate Change Hot-spots in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 783-792.  doi: 10.1007/s00376-009-9034-2
    [13] HUANG Jianping, JI Mingxia, Kaz HIGUCHI, Amir SHABBAR, 2006: Temporal Structures of the North Atlantic Oscillation and Its Impact on the Regional Climate Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 23-32.  doi: 10.1007/s00376-006-0003-8
    [14] Jun WANG, Jinming FENG, Qizhong WU, Zhongwei YAN, 2016: Impact of Anthropogenic Aerosols on Summer Precipitation in the Beijing-Tianjin-Hebei Urban Agglomeration in China: Regional Climate Modeling Using WRF-Chem, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 753-766.  doi: 10.1007/s00376-015-5103-x
    [15] GAO Xuejie, LUO Yong, LIN Wantao, ZHAO Zongci, Filippo GIORGI, 2003: Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 583-592.  doi: 10.1007/BF02915501
    [16] Jingjing LÜ, Yue ZHOU, Zhikang FU, Chunsong LU, Qin HUANG, Jing SUN, Yue ZHAO, Shengjie NIU, 2023: Variability of Raindrop Size Distribution during a Regional Freezing Rain Event in the Jianghan Plain of Central China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 725-742.  doi: 10.1007/s00376-022-2131-1
    [17] LI Shu, WANG Tijian, ZHUANG Bingliang, HAN Yong, 2009: Indirect Radiative Forcing and Climatic Effect of the Anthropogenic Nitrate Aerosol on Regional Climate of China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 543-552.  doi: 10.1007/s00376-009-0543-9
    [18] Jiali MA, Xiuping YAO, 2023: Summer Extreme Precipitation in the Key Region of the Sichuan-Tibet Railway, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 843-855.  doi: 10.1007/s00376-022-2133-z
    [19] Yang Fanglin, Yuan Chongguang, 1993: Numerical Simulation of Regional Short-Range Climate Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 335-344.  doi: 10.1007/BF02658139
    [20] Yun QIAN, TC CHAKRABORTY, Jianfeng LI, Dan LI, Cenlin HE, Chandan SARANGI, Fei CHEN, Xuchao YANG, L. Ruby LEUNG, 2022: Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, and Future Research Directions, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 819-860.  doi: 10.1007/s00376-021-1371-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2007
Manuscript revised: 10 July 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Intercomparison of Precipitation Simulated by Regional Climate Models over East Asia in 1997 and 1998

  • 1. School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea,Department of Geological and Atmospheric Sciences, Iowa State University, Ames, USA,School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea,School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea

Abstract: Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS. The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return