Advanced Search
Article Contents

Improvement in Background Error Covariances Using Ensemble Forecasts for Assimilation of High-Resolution Satellite Data


doi: 10.1007/s00376-010-0145-6

  • Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated.
  • [1] Shibo GAO, Haiqiu YU, Chuanyou REN, Limin LIU, Jinzhong MIN, 2021: Assimilation of Doppler Radar Data with an Ensemble 3DEnVar Approach to Improve Convective Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 132-146.  doi: 10.1007/s00376-020-0081-z
    [2] FU Weiwei, 2012: Altimetric Data Assimilation by EnOI and 3DVAR in a Tropical Pacific Model: Impact on the Simulation of Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 823-837.  doi: 10.1007/s00376-011-1022-7
    [3] ZHENG Jing, Jun LI, Timothy J. SCHMIT, Jinlong LI, Zhiquan LIU, 2015: The Impact of AIRS Atmospheric Temperature and Moisture Profiles on Hurricane Forecasts: Ike (2008) and Irene (2011), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 319-335.  doi: 10.1007/s00376-014-3162-z
    [4] GU Jianfeng, Qingnong XIAO, Ying-Hwa KUO, Dale M. BARKER, XUE Jishan, MA Xiaoxing, 2005: Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 415-427.  doi: 10.1007/BF02918755
    [5] Masoud NOBAKHT, Bahram SAGHAFIAN, Saleh AMINYAVARI, 2021: Skill Assessment of Copernicus Climate Change Service Seasonal Ensemble Precipitation Forecasts over Iran, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 504-521.  doi: 10.1007/s00376-020-0025-7
    [6] Kefeng ZHU, Ming XUE, 2016: Evaluation of WRF-based Convection-Permitting Multi-Physics Ensemble Forecasts over China for an Extreme Rainfall Event on 21 July 2012 in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1240-1258.  doi: 10.1007/s00376-016-6202-z
    [7] Yujie PAN, Mingjun WANG, 2019: Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 160-172.  doi: 10.1007/s00376-018-8087-5
    [8] Zhaorong ZHUANG, Nusrat YUSSOUF, Jidong GAO, 2016: Analyses and Forecasts of a Tornadic Supercell Outbreak Using a 3DVAR System Ensemble, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 544-558.  doi: 10.1007/s00376-015-5072-0
    [9] Ji-Hyun HA, Dong-Kyou LEE, 2012: Effect of Length Scale Tuning of Background Error in WRF-3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1142-1158.  doi: 10.1007/s00376-012-1183-z
    [10] Rong KONG, Ming XUE, Edward R. MANSELL, Chengsi LIU, Alexandre O. FIERRO, 2024: Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI 3DVar, EnKF, and Hybrid En3DVar for the Analysis and Short-Term Forecast of a Supercell Storm Case, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 263-277.  doi: 10.1007/s00376-023-2340-2
    [11] FU Weiwei, ZHOU Guangqing, WANG Huijun, 2004: Ocean Data Assimilation with Background Error Covariance Derived from OGCM Outputs, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 181-192.  doi: 10.1007/BF02915704
    [12] LIU Juanjuan, WANG Bin, WANG Shudong, 2010: The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1303-1310.  doi: 10.1007/s00376-010-9067-6
    [13] Jincheng WANG, Xingwei JIANG, Xueshun SHEN, Youguang ZHANG, Xiaomin WAN, Wei HAN, Dan WANG, 2023: Assimilation of Ocean Surface Wind Data by the HY-2B Satellite in GRAPES: Impacts on Analyses and Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 44-61.  doi: 10.1007/s00376-022-1349-2
    [14] Keyi CHEN, Niels BORMANN, Stephen ENGLISH, Jiang ZHU, 2018: Assimilation of Feng-Yun-3B Satellite Microwave Humidity Sounder Data over Land, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 268-275.  doi: 10.1007/s00376-017-7088-0
    [15] Fabien CARMINATI, Nigel ATKINSON, Brett CANDY, Qifeng LU, 2021: Insights into the Microwave Instruments Onboard the Fengyun 3D Satellite: Data Quality and Assimilation in the Met Office NWP System, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1379-1396.  doi: 10.1007/s00376-020-0010-1
    [16] Kefeng ZHU, Ming XUE, Yujie PAN, Ming HU, Stanley G. BENJAMIN, Stephen S. WEYGANDT, Haidao LIN, 2019: The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1308-1326.  doi: 10.1007/s00376-019-9011-3
    [17] Junhua YANG, Zhenming JI, Deliang CHEN, Shichang KANG, Congshen FU, Keqin DUAN, Miaogen SHEN, 2018: Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 628-644.  doi: 10.1007/s00376-017-7120-4
    [18] Dongmei XU, Feifei SHEN, Jinzhong MIN, Aiqing SHU, 2021: Assimilation of GPM Microwave Imager Radiance for Track Prediction of Typhoon Cases with the WRF Hybrid En3DVAR System, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 983-993.  doi: 10.1007/s00376-021-0252-6
    [19] Lu YANG, Cong-Lan CHENG, Yu XIA, Min CHEN, Ming-Xuan CHEN, Han-Bin ZHANG, Xiang-Yu HUANG, 2023: Evaluation of the Added Value of Probabilistic Nowcasting Ensemble Forecasts on Regional Ensemble Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 937-951.  doi: 10.1007/s00376-022-2056-8
    [20] Dongmei XU, Zhiquan LIU, Shuiyong FAN, Min CHEN, Feifei SHEN, 2021: Assimilating All-sky Infrared Radiances from Himawari-8 Using the 3DVar Method for the Prediction of a Severe Storm over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 661-676.  doi: 10.1007/s00376-020-0219-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2011
Manuscript revised: 10 July 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Improvement in Background Error Covariances Using Ensemble Forecasts for Assimilation of High-Resolution Satellite Data

  • 1. School of Earth and Environmental Sciences, Seoul National University, Seoul 151--747, Korea,School of Earth and Environmental Sciences, Seoul National University, Seoul 151--747, Korea

Abstract: Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return