[an error occurred while processing this directive] ������� 2017, 36(2) 624-631 DOI:   10.3969/j.issn.1004-5589.2017.02.030  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
ң�С�����
��չ����
������Ϣ
Supporting info
PDF(2728KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
ң��
ˮ��ʴ��
���Ѵ�
�ռ����
����ɽ
���������������
PubMed
����ɽ����ˮ��ʴ��ֲ�����Ҫ���Ѵ��Ŀռ��ϵ
����1, ������1, �Ÿ���1, ���Ļ�2, ��ΰ��1
1. ���ִ�ѧ����̽���ѧ�뼼��ѧԺ, ���� 130026;
2. ������ҵ��ѧ��ѧԺ, ������ 150040
ժҪ��

����Landsat8 OLI���ݣ���Գ���ɽ�����ۺ�ʹ�ñ�ֵ�������ɷַ�������ȡˮ��ʴ����Ϣ����ȡ���Ⱦ�Ұ����֤Ϊ83.3%�����õȾ������Ȩ���ӷ�����ͳ�Ʒ����Ըõ���ˮ��ʴ��ֲ�����Ҫ���Ѵ��Ŀռ��ϵ�����˶����������о��������ˮ��ʴ���ǿ������������Ѵ��ľ�����ָ���ء����γɵĶ��Ѵ������Լ����Ѵ��Ľ��㴦ˮ��ʴ��ǿ�Ƚϴ�

�ؼ����� ң��   ˮ��ʴ��   ���Ѵ�   �ռ����   ����ɽ  
Spatial relationship between distribution of hydrothermal alteration and main fault in Changbai Mountain area
WANG Kai1, XING Li-xin1, ZHANG Fu-kun1, LI Wen-hui2, ZHONG Wei-jing1
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China;
2. School of Forestry, Northest Forestry University, Harbin 150040, China
Abstract:

The Landsat 8 OLI data was used to extract hydrothermal alteration information of Changbai Mountain area by the ratio method and principal component analysis method. The extraction precision verified by the field investigation was 83.3%. Isometric partitioned weighted superposition analysis of statistical methods was used to achieve the quantitative analysis of the spatial relations between the distribution of hydrothermal alteration and the main fault zone. The results show a negative correlation between the intensity of the hydrothermal alteration and the distance from the fault, and the high intensity hydrothermal alteration occurred near the newly formed fault and intersecting zone of faults.

Keywords: remote sensing   hydrothermal alteration   fault zone   spatial analysis   Changbai Mountain  
�ո����� 2016-09-01 �޻����� 2016-12-21 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2017.02.030
������Ŀ:

����ʡ���ʿ��������Ŀ��[2014]�ؿ�13-13��.

ͨѶ����: ������(1954),Ů,��ʿ����ʦ,��Ҫ����ң�е��ʵ�����ң�м���Ӧ�õ��о�.E-mail:xinglx@mails.jlu.edu.cn
���߼��:
����Email: xinglx@mails.jlu.edu.cn

�ο����ף�

[1] ������.��ɽ.��Ȫ.������[M].����:���ʳ�����,1986:42-43. HANG Shang-yao. Volcanoes hot springs and geothermal energy [M]. Beijing: Geological Publishing House,1986: 42-43.
[2] ������.�󴲵���ѧ[M].����:������ѧ������,2012:44-45. ZHU Yong-feng. Geochemistry of deposit[M]. Beijing: University of Peking Press, 2012:44-45.
[3] Gabr S, Ghulam A, Kusky T. Detecting areas of high-potential gold mineralization using ASTER data[J].Ore Geology Reviews,2010,38(1/2):59-69.
[4] Bedini E. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data[J].Advances in Space Research,2011,47(1):60-73.
[5] Zhang X F, Pazner M, Duke N. Lithologic and mineral information extraction for gold exploration using ASTER data in the South Chocolate Mountains(California)[J]. Isprs Jornal of Photo-grametry and Romote Sensing,2007,62(4):271-282.
[6] GalVao L S, Formaggio A R, Couto E G, et al. Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sending data[J].Isprs Journal of Photo-frammetry and Remote Sensing,2008,63(2):259-271.
[7] ʯ����,�����. �иְĴ�����Carpentaria�̿��Ȩ��ASTER����ʴ����Ϣ��ȡ�о�[J]. �������,2015,34(2):543-550. SHI Yu-long, LIN Zi-yu. Alteration information extracting based on ASTER data of Sino steel manganese ore mining area in Carpentaria, Australia[J]. Global Geology, 2015,34(2):543-550.
[8] ������,л־��,��Ծ��.ETMͼ�������п�ʴ����Ϣ����ȡ:����������ʲ����ɵ���Ϊ��[J]��������Դ,2002,11 (2):119-122. WANG Xiao-peng, XIE Zhi-qing, WU Yue-zhong. Information extraction of mineralizing alteration from ETM space image:taking Taxkorgan area of West Kunlun Mountain as an example[J]. Geology and Resources, 2002,11(2):119-122.
[9] �,�����,������,��.����Ϣ��ȡ����ң��ģ�͵Ľ���:��ӥ��ɽ�軯ʴ��Ϊ��[J]. ң��ѧ��,2005,9(6):717-724. YANG Bo, WU De-wen, LAI Jian-qing, et al. The setup of quantitation remote sensing models for mineralization and alteration: take silicification in Yingzuishan gold mine as an example[J]. Journal of Remote Sensing, 2005, 9(6):717-724.
[10] ����ƽ,������,������,��.�ڳ����й�ȹ���ϵͳ��ˮ��ʴ������[J].�󴲵���, 2002,21(����1):1031-1033 WANG Hai-ping, ZHANG Tian-le, WANG Zong-liang, et al. Geothermal release structures and hydrothermal alterations in geothermal district of Tengchong[J].Mineral Deposits,2002,21(Suppl.1):1031-1033.
[11] �ؽ���. �������׵������ˮ��ʴ�估���ȵ�������[J].̫ԭ����ѧѧ��,2003,34(2):161-165. QIN Jin-sheng. Hydrothermal alteration and geothermal geological significance of Tibetan Yangyi geothermal field[J]. Journal of Taiyuan University of Technology, 2003,34(2):161-165.
[12] �Ÿ���,������,������,��. ����ɽ������Ҫ���Ѵ���ر��¶ȳ���ϵ�о�[J]. �������,2016,35(1):153-162. ZHANG Fu-kun, XING Li-xin, HAN Ting-ting, et al. Relationship between main fault and land surface temperature field of Changbai Mountain area[J]. Global Geology, 2016,35(1):153-162.
[13] ���,����,����,��. LandsatӰ�����У�������������Է���[J].����ʦ����ѧѧ��:��Ȼ��ѧ��, 2013, 47 (1):571-577. WANG Sa, LI Xi, ZHANG Qi, et al. Analysis on the applicability of the topographic correction models for Landsat images[J]. Journal of Huazhong Normal University: Natural Sciences, 2013, 47(4):571-577.
[14] ����,������,�˾�,��.��Ϸ���ʴ����Ϣ��ȡ�����о�[J]. ң�м�����Ӧ��, 2011,26(3):303-308. LI Miao-miao, XING Li-xin, PAN Jun, et al. Research of combinatory analysis method in altered information extraction[J].Remote Sensing Technology and Application, 2011,26(3):303-308.

�������������
1��������, ������, ��h, ������.���ڸ߷ֱ���ң��Ӱ��ĵ�����ˮʴ��Į��ʱ���ݱ�����[J]. �������, 2018,37(1): 289-295
2������Դ, ������, ����Ȩ, ������.����ɽС��غͳ����ٲ�ˮ�����������ϸ�������ԱȽ�[J]. �������, 2017,36(2): 632-642
3������, ������, ����, ֣��, ������, �����.�������Ѵ���������߻�-����¼�����֤��[J]. �������, 2017,36(2): 486-494,506
4����һ��, ������, ���.����ƽԭʪ��ʱ���ݱ�̽��[J]. �������, 2017,36(1): 299-304
5������, ����, ��ѧ־, �����, ֣����, ���㸦.����ɽ���������ڶ��ֳ���--��--��������󴲳ɿ��������ҿ���[J]. �������, 2016,35(4): 1013-1020
6���ִ��, �º���, ������, ��Զ��, ���.�����޳�����ͭ��ң�е��ʽ��뼰�ɿ������[J]. �������, 2016,35(4): 1138-1144
7������, Ѧ�ָ�, ף��, ������.������������—ƫ����Ѵ����������[J]. �������, 2016,35(2): 495-502
8���Ÿ���, ������, ������, ����־, ����.����ɽ������Ҫ���Ѵ���ر��¶ȳ���ϵ�о�[J]. �������, 2016,35(1): 153-162
9����ʥ��, ������, ��Ө, ����.���� IHS �任�������쳣��ң��Ӱ���ںϵĹ�����Ϣ��ȡ�о�[J]. �������, 2015,34(4): 1125-1130
10���︻��, �ų���, ��Ө, κ˫��, ����, ����.�����г�����չ����������Ч���о�[J]. �������, 2015,34(4): 1140-1148
11��ͯ����, ���³�.�չ�(��)�ӵ���ʡң�е��ʽ�����������ս��ѡ��[J]. �������, 2015,34(2): 531-542
12������ˮ, �ŷ���, ���ѷ�.���˰��뱱�εĵ��������о�[J]. �������, 2015,34(1): 187-193
13�����, ��ҫ��, ���, ����.inhomogeneous elastic medium; forward numerical simulation; velocity- stress equation; pseudo- spectral method; geological model��[J]. �������, 2014,33(4): 940-945
14����ˬ, ��ʥ��, �����, ������.������������ң���ҿ�ģ���о�[J]. �������, 2014,33(4): 946-951
15�������, �����, ������.�ش����Ϸ��ݽ����ڳ���ɽ���������е�Ӧ��[J]. �������, 2014,33(4): 910-915

Copyright by �������