橄榄石微量元素原位分析的现状及其应用

张柳毅, 李霓, Dejan PRELEVIĆ. 橄榄石微量元素原位分析的现状及其应用[J]. 岩石学报, 2016, 32(6): 1877-1890.
引用本文: 张柳毅, 李霓, Dejan PRELEVIĆ. 橄榄石微量元素原位分析的现状及其应用[J]. 岩石学报, 2016, 32(6): 1877-1890.
ZHANG LiuYi, LI Ni, Dejan PRELEVIĆ. The research status of olivine trace elements in-situ analysis and perspectives of its application[J]. Acta Petrologica Sinica, 2016, 32(6): 1877-1890.
Citation: ZHANG LiuYi, LI Ni, Dejan PRELEVIĆ. The research status of olivine trace elements in-situ analysis and perspectives of its application[J]. Acta Petrologica Sinica, 2016, 32(6): 1877-1890.

橄榄石微量元素原位分析的现状及其应用

  • 基金项目:

    本文受国家自然科学基金项目(41072250)资助.

详细信息

The research status of olivine trace elements in-situ analysis and perspectives of its application

More Information
  • 随着高精度EMPA和LA-ICP-MS分析技术的发展和矿物微量元素测试精度的提高,利用橄榄石中的微量元素示踪地幔部分熔融、地幔交代作用、岩浆早期结晶过程等地质问题成为近年来一个新兴的研究方向。一系列开拓性的研究发现也被陆续的发表,主要涉及橄榄石中Ni、Co、Al、Cr、Zn、Ti、Li、V、Sc、Mn、Ca和P等元素的示踪使用。一些卓有成效的示踪方法为:Ca、Al、Ti、Ni及Mn能够很好的用于区分橄榄石捕掳晶和斑晶;橄榄石-尖晶石地幔演化趋势线(OSMA:olivine-spinel mantle array)图解可以用于表征岩浆源区的亏损程度;玄武岩中橄榄石斑晶的Li同位素及Li含量可以很有效地指示岩浆源区是否存在地壳物质再循环及地幔交代作用;橄榄石斑晶中Ni、Ca、Mn、Cr 和 Al协变关系图解可以识别岩浆的辉石岩源区;利用橄榄石捕掳晶中Zr和Sc的含量差异特征可将橄榄岩中三种最主要的类型(尖晶石橄榄岩、石榴石橄榄岩以及尖晶石-石榴石橄榄岩)区分开来;一些元素的比值或组合(例如Ni/Co、Fe/Mn、V/Sc、Zr和Sc、Ca和Ti)可以指示源区交代作用、岩浆作用过程及氧化状态;基于橄榄石中Al、Cr及Ca的地质温度计可以为推算地幔热状态提供新方法;基于橄榄石分离结晶Fo-NiO演化线的原始岩浆计算模型可以较好的推算原始岩浆成分;利用橄榄石的环带及微量元素的扩散机制可以判别更多岩石成因信息,如识别交代介质、熔体类型以及地质构造背景等。基于上述最新研究的相关资料和已有成果,本文对橄榄石微量元素的地球化学示踪方法做系统性的归纳整理,并对橄榄石微量元素赋存状况、橄榄石微量元素测试方法、橄榄石微量元素的使用条件及需注意的问题等进行讨论,为读者在做相关研究时提供参考。
  • 加载中
  • [1]

    Arai S. 1987. An estimation of the least depleted spinel peridotite on the basis of olivine-spinel mantle array. Neues Jahrbuch für Mineralogie Monatshefte, 8: 347-354

    [2]

    Arai S. 1990. What kind of magmas could be equilibrated with ophiolitic peridotites? In: Malpas J, Moores EM, Panayiotou A and Xenophontos C (eds.). Proceedings of the Symposium Troodos 1987: Ophiolites, Oceanic Crustal Analogues. Nicosia: Geological Survey, Ministry of Agriculture and Natural Resources, 557-565

    [3]

    Arai S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56(383): 173-184

    [4]

    Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 113(3-4): 191-204

    [5]

    Bédard JH. 2005. Partitioning coefficients between olivine and silicate melts. Lithos, 83(3-4): 394-419

    [6]

    Berry AJ, O'Neill HSC, Hermann J and Scott DR. 2007. The infrared signature of water associated with trivalent cations in olivine. Earth and Planetary Science Letters, 261(1-2): 134-142

    [7]

    Bickle MJ. 1982. The magnesium contents of komatiitic liquids. In: Arndt NT and Nisbet EG (eds.). Komatiites. London: George Allen and Unwin, 479-494

    [8]

    Brett R, Russell JK and Moss S. 2009. Origin of olivine in kimberlite: Phenocryst or impostor? Lithos, 112(S1): 201-212

    [9]

    Canil D. 1997. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature, 389(6653): 842-845

    [10]

    Canil D. 2002. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth and Planetary Science Letters, 195(1-2): 75-90

    [11]

    Chakraborty S. 2008. Diffusion in solid silicates: A tool to track timescales of processes comes of age: Annual Review of Earth and Planetary Sciences, 36(1): 153-190

    [12]

    Coogan LA, Hain A, Stahl S and Chakraborty S. 2005. Experimental determination of the diffusion coefficient for calcium in olivine between 900℃ and 1500℃. Geochimica et Cosmochimica Acta, 69(14): 3683-3694

    [13]

    Coogan LA, Saunders AD and Wilson RN. 2014. Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chemical Geology, 368: 1-10

    [14]

    De Hoog JCM, Gall L and Cornell DH. 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4): 196-215

    [15]

    Dohmen R and Chakraborty S. 2007. Fe-Mg diffusion in olivine Ⅱ: Point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Physics and Chemistry of Minerals, 34(6): 409-430

    [16]

    Eggins SM, Rudnick RL and McDonough WF. 1998. The composition of peridotites and their minerals: A laser-ablation ICP-MS study. Earth and Planetary Science Letters, 154(1-4): 53-71

    [17]

    Feig ST, Koepke J and Snow JE. 2006. Effect of water on tholeiitic basalt phase equilibria: An experimental study under oxidizing conditions. Contributions to Mineralogy and Petrology, 152(5): 611-638

    [18]

    Feig ST, Koepke J and Snow JE. 2010. Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contributions to Mineralogy and Petrology, 160(4): 551-568

    [19]

    Foley SF, Jacob DE and O'Neill HSC. 2011. Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contributions to Mineralogy and Petrology, 162(1): 1-20

    [20]

    Foley SF, Prelevic D, Rehfeldt T and Jacob DE. 2013. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth and Planetary Science Letters, 363: 181-191

    [21]

    Ford CE, Russell DG, Craven JA and Fisk MR. 1983. Olivine-liquid equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. Journal of Petrology, 24(3): 256-266

    [22]

    Green DH, Falloon TJ, Eggins SM and Yaxley GM. 2001. Primary magmas and mantle temperatures. European Journal of Mineralogy, 13(3): 437-451

    [23]

    Green DH and Falloon TJ. 2005. Primary magmas at mid-ocean ridges, "hotspots" and other intraplate settings: Constraints on mantle potential temperature. Geological Society of America Special Papers, 388: 217-247

    [24]

    Griffin WL, Powell WJ, Pearson NJ and O'Reilly SY. 2008. GLITTER: Data reduction software for laser ablation ICP-MS. In: Sylvester P (ed.). Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series, 40: 204-207

    [25]

    Hanson B, Delano JW and Lindstrom DJ. 1996. High-precision analysis of hydrous rhyolitic glass inclusions in quartz phenocrysts using the electron microprobe and INAA. American Mineralogist, 81(9-10): 1249-1262

    [26]

    Hayman PC, Cas RAF and Johnson M. 2008. Difficulties in distinguishing coherent from fragmental kimberlite: A case study of the Muskox pipe (Northern Slave Province, Nunavut, Canada). Journal of Volcanology and Geothermal Research, 174(1-3): 139-151

    [27]

    Hermann J, O'Neill HSC and Berry AJ. 2005. Titanium solubility in olivine in the system TiO2-MgO-SiO2: No evidence for an ultra-deep origin of Ti-bearing olivine. Contributions to Mineralogy and Petrology, 148(6): 746-760

    [28]

    Hervig RL, Smith JV and Dawson JB. 1986. Lherzolite xenoliths in kimberlites and basalts: Petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinel. Transactions of the Royal Society of Edinburgh: Earth Sciences, 77(3): 181-201

    [29]

    Herzberg C and Asimow PD. 2008. Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9(9), doi: 10.1029/2008GC002057

    [30]

    Humayun M, Qin LP and Norman MD. 2004. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science, 306(5693): 91-94

    [31]

    Humphreys ER and Niu YL. 2009. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 112(1-2): 118-136

    [32]

    Imai T, Takahashi E, Suzuki T and Hirata T. 2012. Element partitioning between olivine and melt up to 10GPa: Implications for the effect of pressure. Physics of the Earth and Planetary Interiors, 212-213: 64-75

    [33]

    Ionov DA and Seitz HM. 2008. Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: Mantle sources vs. eruption histories. Earth and Planetary Science Letters, 266(3-4): 316-331

    [34]

    Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K and Brooker R. 2007. Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71(1): 202-218

    [35]

    Jochum KP and Nohl U. 2008. Reference materials in geochemistry and environmental research and the GeoReM database. Chemical Geology, 253(1-2): 50-53

    [36]

    Kamenetsky VS, Elburg M, Arculus R and Thomas R. 2006. Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas. Chemical Geology, 233(3-4): 346-357

    [37]

    Kinzler RJ, Grove TL and Recca SI. 1990. An experimental study on the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt. Geochimica et Cosmochimica Acta, 54(5): 1255-1265

    [38]

    Koepke J, Schoenborn S, Oelze M, Wittmann H, Feig ST, Hellebrand E, Boudier F and Schoenberg R. 2009. Petrogenesis of crustal wehrlites in the Oman ophiolite: Experiments and natural rocks. Geochemistry, Geophysics, Geosystems, 10(10), doi: 10.1029/2009GC002488

    [39]

    Lai SC, Yi HS, Liu CY and O'Reilly SY. 2002. LA-ICP-MS and EMP analysis of olivines in Cenozoic trachybasalt from north Qiangtang, Qinghai-Tibet Plateau. Acta Mineralogica Sinica, 22(2): 107-112 (in Chinese with English abstract)

    [40]

    Laubier M, Grove TL and Langmuir CH. 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392: 265-278

    [41]

    Li CS and Ripley EM. 2010. The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling. Chemical Geology, 275(1-2): 99-104

    [42]

    Li YS, Zhang ZC and Nie BF. 2012. An improved simple method for estimating primitive magma: A case for the picrites in the Lijiang area of Emeishan large igneous province. Geological Review, 58(4): 653-659 (in Chinese with English abstract)

    [43]

    Liu JL, Wang J, Song Y, Liu JG and Li A. 2014. Study on SCLM in Aershan-Chaihe area of Inner Mongolia: Evidence from trace elements of clinopyroxene. Global Geology, 33(1): 1-10 (in Chinese with English abstract)

    [44]

    Longerich HP, Jackson SE and Günther D. 1996. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyze concentration calculation. Journal of Analytical Atomic Spectrometry, 11(9): 899-904

    [45]

    Mallmann G and O'Neill HSC. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9): 1765-1794

    [46]

    Mallmann G and O'Neill HSC. 2013. Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. Journal of Petrology, 54(5): 933-949

    [47]

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253

    [48]

    Michael E, Skinner W and Clement CR. 1979. Mineralogical classification of southern African kimberlites. In: Meyer HOA and Boyd R (eds.). Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry. Washington, DC: American Geophysical Union, 129-139

    [49]

    Morishita T, Ishida Y and Arai S. 2005. Simultaneous determination of multiple trace element compositions in thin (<30μm) layers of BCR-2G by 193nm ArF excimer laser ablation-ICP-MS: Implications for matrix effect and elemental fractionation on quantitative analysis. Geochemical Journal, 39(4): 327-340

    [50]

    Niu YL and O'Hara MJ. 2007a. Varying Ni in OIB olivines: Product of process not source. Geochimica et Cosmochimica Acta, 71(15S): A721

    [51]

    Niu YL and O'Hara MJ. 2007b. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective. Journal of Petrology, 49(4): 633-664

    [52]

    Niu YL and O'Hara MJ. 2009. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle. Lithos, 112(1-2): 1-17

    [53]

    Niu YL, Wilson M, Humphreys ER and O'Hara MJ. 2011. The origin of intra-plate ocean island basalts (OIB): The lid effect and its geodynamic implications. Journal of Petrology, 52(7-8): 1443-1468

    [54]

    Norman MD, Griffin WL, Pearson NJ, Garcia MO and O'reilly SY. 1998. Quantitative analysis of trace element abundances in glasses and minerals: A comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry, 13(5): 477-482

    [55]

    Petry C, Chakraborty S and Palme H. 2004. Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochimica et Cosmochimica Acta, 68(20): 4179-4188

    [56]

    Pilbeam LH, Nielsen TFD and Waight TE. 2013. Digestion fractional crystallization (DFC): An important process in the genesis of kimberlites. Evidence from olivine in the Majuagaa kimberlite, southern West Greenland. Journal of Petrology, 54(7): 1399-1425

    [57]

    Prelević D and Foley SF. 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth and Planetary Science Letters, 256(1-2): 120-135

    [58]

    Prelević D, Jacob DE and Foley SF. 2013. Recycling plus: A new recipe for the formation of Alpine-Himalayan orogenic mantle lithosphere. Earth and Planetary Science Letters, 362: 187-197

    [59]

    Putirka KD. 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6(5), doi: 10.1029/2005GC000915

    [60]

    Qian Q, O'Neill HSC and Hermann J. 2010. Comparative diffusion coefficients of major and trace elements in olivine at ~950℃ from a xenocryst included in dioritic magma. Geology, 38(4): 331-334

    [61]

    Reubi O, Nicholls IA and Kamenetsky VS. 2003. Early mixing and mingling in the evolution of basaltic magmas: Evidence from phenocryst assemblages, Slamet Volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research, 119(1-4): 255-274

    [62]

    Roeder PL and Emslie RF. 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275-289

    [63]

    Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S and Qopoto C. 2005. Petrological constraints on the origin of arc picrites, New Georgia Group, Solomon Islands. Contributions to Mineralogy and Petrology, 149(6): 685-698

    [64]

    Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64

    [65]

    Ruzicka A, Snyder GA and Taylor LA. 2001. Comparative geochemistry of basalts from the Moon, Earth, HED asteroid, and Mars: Implications for the origin of the Moon. Geochimica et Cosmochimica Acta, 65(6): 979-997

    [66]

    Sato H. 1977. Nickel content of basaltic magmas: Identification of primary magmas and a measure of the degree of olivine fractionation. Lithos, 10(2): 113-120

    [67]

    Seitz HM and Woodland AB. 2000. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies: An indicator of magmatic and metasomatic processes. Chemical Geology, 166(1-2): 47-64

    [68]

    Shearer CK, McKay G, Papike JJ and Karner JM. 2006. Valence state partitioning of vanadium between olivine-liquid: Estimates of the oxygen fugacity of Y980459 and application to other olivine-phyric martian basalts. American Mineralogist, 91(10): 1657-1663

    [69]

    Sobolev AV, Hofmann AW, Sobolev SV and Nikogosian IK. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590-597

    [70]

    Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM and Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412-417

    [71]

    Sobolev NV, Logvinova AM, Zedgenizov DA, Pokhilenko NP, Kuzmin DV and Sobolev A. 2008. Olivine inclusions in Siberian diamonds: High-precision approach to minor elements. European Journal of Mineralogy, 20(3): 305-315

    [72]

    Straub SM, LaGatta AB, Pozzo ALMD and Langmuir CH. 2008. Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochemistry, Geophysics, Geosystems, 9(3), doi: 10.1029/2007GC001583

    [73]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunder AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

    [74]

    Takahashi E. 1978. Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts: Compositional dependence of partition coefficient. Geochimica et Cosmochimica Acta, 42(12): 1829-1844

    [75]

    Takahashi E. 1986. Origin of basaltic magmas-Implications from peridotite melting experiments and an olivine fractionation model. Bulletin of the Volcanological Society of Japan, 30: S17-S40

    [76]

    Tamura Y, Yuhara M and Ishii T. 2000. Primary arc basalts from Daisen volcano, Japan: Equilibrium crystal fractionation versus disequilibrium fractionation during supercooling. Journal of Petrology, 41(3): 431-448

    [77]

    Tamura Y, Ishizuka O, Stern RJ, Shukuno H, Kawabata H, Embley RW, Hirahara Y, Chang Q, Kimura JI, Tatsumi Y, Nunokawa A and Bloomer SH. 2011. Two primary basalt magma types from Northwest Rota-1 volcano, Mariana arc and its mantle diapir or mantle wedge plume. Journal of Petrology, 52(6): 1143-1183

    [78]

    Tamura Y, Ishizuka O, Stern RJ, Nichols ARL, Kawabata H, Hirahara Y, Chang Q, Miyazaki T, Kimura JI, Embley RW and Tatsumi Y. 2014. Mission immiscible: Distinct subduction components generate two primary magmas at Pagan volcano, Mariana Arc. Journal of Petrology, 55(1): 63-101

    [79]

    Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K and Ying JF. 2007. Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: Implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochimica et Cosmochimica Acta, 71(17): 4327-4341

    [80]

    Tang YJ, Zhang HF, Deloule E, Su BX, Ying JF, Santosh M and Xiao Y. 2014. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. Scientific Reports, 4: 4274

    [81]

    Tatsumi Y, Sakuyama M, Fukuyama H and Kushiro I. 1983. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. Journal of Geophysical Research: Solid Earth (1978~2012), 88(B7): 5815-5825

    [82]

    Taura H, Yurimoto H, Kurita K and Sueno S. 1998. Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Physics and Chemistry of Minerals, 25(7): 469-484

    [83]

    Thompson RN and Gibson SA. 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 407(6803): 502-506

    [84]

    Tinker D and Lesher CE. 2001. Solubility of TiO2 in olivine from 1 to 8GPa. In: American Geophysical Union, Fall Meeting, Abstracts #V51B-1001. Washington, DC: American Geophysical Union, 1: 1001

    [85]

    Ulmer P, Risold AC and Trommsdorff V. 1998. TiO2 solubility in mantle olivine as a function of pressure, temperature, a(SiO2), and f(H2). In: EOS Transactions American Geophysical Union, Fall Meeting Supplement, Abstract V12A-06. Washington, DC: American Geophysical Union, 79: F164

    [86]

    Wan ZH, Coogan LA and Canil D. 2008. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. American Mineralogist, 93(7): 1142-1147

    [87]

    White WM and Hofmann AW. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296(5860): 821-825

    [88]

    Xiao Y, Zhang HF, Fan WM, Ying JF, Zhang J, Zhao XM and Su BX. 2010. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 117(1-4): 229-246

    [89]

    Yamashita S and Tatsumi Y. 1994. Thermal and geochemical evolution of the mantle wedge in the northeast Japan arc: 2. Contribution from geochemistry. Journal of Geophysical Research: Solid Earth (1978~2012), 99(B11): 22285-22293

    [90]

    Yaxley GM and Green DH. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen, 78(2): 243-255

    [91]

    Zanetti A, Tiepolo M, Oberti R and Vannucci R. 2004. Trace-element partitioning in olivine: Modelling of a complete data set from a synthetic hydrous basanite melt. Lithos, 75(1-2): 39-54

    [92]

    Zhang HF, Ying JF, Xu P and Ma YG. 2004. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China Craton: Implication for replacement process of lithospheric mantle. Chinese Science Bulletin, 49(9): 961-966

    [93]

    Zhang HF. 2005. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth and Planetary Science Letters, 237(3-4): 768-780

    [94]

    Zhang HF. 2006. Peridotite-melt interaction: An important mechanism for the compositional transformation of lithospheric mantle. Earth Science Frontiers, 13(2): 65-75 (in Chinese with English abstract)

    [95]

    Zhang HF, Deloule E, Tang YJ and Ying JF. 2010. Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence. Contributions to Mineralogy and Petrology, 160(2): 261-277

    [96]

    Zhang ZC and Wang FS. 2003. A method for identifying primary magma: Examples from picrite and alkali basalts. Journal of Jilin University (Earth Science Edition), 33(2): 130-134 (in Chinese with English abstract)

    [97]

    Zhang ZC and Wang FS. 2004. High-Mg olivine and high-Cr spinels in the picritic rocks from the Emeishan continental flood basalt province. Progress in Natural Science, 14(1): 70-74 (in Chinese)

    [98]

    Zhang ZC, Mahoney JJ, Mao JW and Wang FS. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997-2019

    [99]

    Zhao XM, Zhang HF, Zhu XK, Zhu B and Cao HH. 2015. Effects of melt percolation on iron isotopic variation in peridotites from Yangyuan, North China Craton. Chemical Geology, 401: 96-110

    [100]

    Zheng S, Hu ZC and Shi YF. 2009. Accurate determination of Ni, Ca and Mn in olivine by EPMA and LA-ICP-MS. Earth Science, 34(1): 220-224 (in Chinese with English abstract)

    [101]

    赖绍聪, 伊海生, 刘池阳, O'Reilly S Y. 2002. 青藏高原北羌塘半岛湖新生代粗面玄武岩橄榄石电子探针和激光探针分析. 矿物学报, 22(2): 107-112

    [102]

    李永生, 张招崇, 聂保锋. 2012. 一种改进的简单的估算原始岩浆的方法——以峨眉山大火成岩省丽江苦橄岩为例. 地质论评, 58(4): 653-659

    [103]

    刘金霖, 王建, 宋樾, 刘建国, 李爱. 2014. 内蒙古阿尔山-柴河地区陆下岩石圈地幔性质研究——第四纪碱性玄武岩中橄榄岩捕掳体中单斜辉石微量元素证据. 世界地质, 33(1): 1-10

    [104]

    张宏福. 2006. 橄榄岩-熔体的相互作用: 岩石圈地幔组成转变的重要方式. 地学前缘, 13(2): 65-75

    [105]

    张招崇, 王福生, 2003. 一种判别原始岩浆的方法——以苦橄岩和碱性玄武岩为例. 吉林大学学报(地球科学版), 33(2): 130-134

    [106]

    张招崇, 王福生. 2004. 峨眉山大陆溢流玄武岩省苦橄质岩石的高镁橄榄石和高铬尖晶石及其意义. 自然科学进展, 14(1): 70-74

    [107]

    郑曙, 胡兆初, 史玉芳. 2009. 橄榄石中 Ni, Ca, Mn含量的电子探针与激光等离子体质谱准确分析. 地球科学, 34(1): 220-224

  • 加载中
计量
  • 文章访问数:  8960
  • PDF下载数:  8270
  • 施引文献:  0
出版历程
收稿日期:  2015-04-03
修回日期:  2015-10-20
刊出日期:  2016-06-30

目录