华北东南缘前寒武纪下地壳的生长和变质演化

刘贻灿, 王程程, 张品刚, 聂佳珍. 华北东南缘前寒武纪下地壳的生长和变质演化[J]. 岩石学报, 2015, 31(10): 2847-2862.
引用本文: 刘贻灿, 王程程, 张品刚, 聂佳珍. 华北东南缘前寒武纪下地壳的生长和变质演化[J]. 岩石学报, 2015, 31(10): 2847-2862.
LIU YiCan, WANG ChengCheng, ZHANG PinGang, NIE JiaZhen. Growth and metamorphic evolution of the Precambrian lower crust at the southeastern margin of the North China Block[J]. Acta Petrologica Sinica, 2015, 31(10): 2847-2862.
Citation: LIU YiCan, WANG ChengCheng, ZHANG PinGang, NIE JiaZhen. Growth and metamorphic evolution of the Precambrian lower crust at the southeastern margin of the North China Block[J]. Acta Petrologica Sinica, 2015, 31(10): 2847-2862.

华北东南缘前寒武纪下地壳的生长和变质演化

  • 基金项目:

    本文受国家973项目(2015CB856104)、教育部博士点基金项目(20133402130008)和国家自然科学基金项目(41273036、41430210)联合资助.

Growth and metamorphic evolution of the Precambrian lower crust at the southeastern margin of the North China Block

  • 华北陆块东南缘前寒武纪下地壳岩石主要以高级变质地体或麻粒岩地体和中生代闪长斑岩中(麻粒岩)捕虏体两种形式存在,它们为研究该区前寒武纪下地壳的形成和演化提供了极好的天然实验室。变质地体主要分布于霍邱和蚌埠地区,包括原"霍邱群"(霍邱杂岩)及"五河群"和"凤阳群"(五河杂岩)等。其中,霍邱杂岩主要由白云斜长片麻岩、石英岩、云母片岩、大理岩、变质砂岩、条带状铁建造(BIF)和斜长角闪岩等组成,但地表已被第四纪覆盖;五河杂岩主要含有石榴斜长角闪岩/榴闪岩、石榴麻粒岩、异剥钙榴岩、石榴斜长角闪片麻岩、花岗片麻岩、云母片岩、大理岩和变质砂岩等变质岩。相比较,五河杂岩大多出露地表,主要由变质的镁铁质和长英质火成岩以及表壳岩系组成,并伴生有古元古代片麻状钾长花岗岩和中生代花岗岩类,构成了"蚌埠隆起"。这些不同类型的变质岩常具有类似的峰期变质矿物,如石榴子石、单斜辉石、斜长石、金红石和石英等,结合其锆石U-Pb年龄,表明它们大多数都经历了古元古代高压麻粒岩相变质作用。综合的变质岩石学、岩石地球化学、Hf同位素及锆石U-Pb年代学研究表明,该区前寒武纪下地壳经历了幕式生长以及多阶段变质演化与改造。强烈的构造-热事件和变质改造时间主要集中于2.7~2.8Ga、2.5~2.6Ga、~2.1Ga、1.8~1.9Ga、390Ma和176Ma,而前寒武纪下地壳的形成时间≥2.1Ga。在综述、分析相关成果的基础之上,作者提出了华北东南缘前寒武纪下地壳变质岩石研究方面存在的重要科学问题与展望。
  • 加载中
  • [1]

    Ague JJ, Eckert JO Jr, Chu X, Baxter EF and Chamberlain CP. 2013. Discovery of ultrahigh-temperature metamorphism in the Acadian orogen, Connecticut, USA. Geology, 41(2): 271-274

    [2]

    Amelin Y, Lee DC and Halliday AN. 2000. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225

    [3]

    Andersen T, Griffin WL and Pearson NJ. 2002. Crustal evolution in the SW part of the Baltic Shield: The Hf isotope evidence. Journal of Petrology, 43(9): 1725-1747

    [4]

    Bartoli O, Tajcˇmanová L, Cesare B and Acosta-Vigil A. 2013. Phase equilibria constraints on melting of stromatic migmatites from Ronda (S. Spain): Insights on the formation of peritectic garnet. Journal of Metamorphic Geology, 31(7): 775-789

    [5]

    Bureau of Geology and Mineral Resources of Anhui Province. 1987. Regional Geology of Anhui Province. Beijing: Geological Publishing House, 1-721 (in Chinese)

    [6]

    Bureau of Geology and Mineral Resources of Anhui Province. 1997. Stratigraphy (Lithostratic) of Anhui Province. Wuhan: China University of Geosciences Press, 1-271 (in Chinese)

    [7]

    Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D and Cavallo A. 2009. "Nanogranite" and glassy inclusions: The anatectic melt in migmatites and granulites. Geology, 37(7): 627-630

    [8]

    Cherniak DJ and Watson EB. 2003. Diffusion in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 113-143

    [9]

    Coleman RG. 1977. Ophiolites, Minerals and Rocks. Berlin/Heidelberg, Germany: Springer-Verlag

    [10]

    Condie KC. 1998. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth and Planetary Science Letters, 163(1-4): 97-108

    [11]

    Condie KC. 2000. Episodic continental growth models: After thoughts and extensions. Tectonophysics, 322(1-2): 153-162

    [12]

    Condie KC, Beyer EE, Belousova E, Griffin WL and O\'Reillyal SY. 2005. U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 139(1): 42-100

    [13]

    Condie KC, Bickford ME, Aster RC, Belousova E and Scholl DW. 2011. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of America Bulletin, 123(5-6): 951-957

    [14]

    Corfu G, Hancher JM, Hoskin PWO and Kinny P. 2003. Altas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500

    [15]

    Davis WJ, Canil D, MacKenzie JM and Carbno GB. 2003. Petrology and U-Pb geochronology of lower crustal xenoliths and the development of a craton, Slave Province, Canada. Lithos, 71(2-4): 541-573

    [16]

    De Roever EWF, Lafon JM, Delor C, Cocherie A, Rossi P, Guerrrot C and Potrel A. 2003. The Bakhuis ultrahigh-temperature granulite belt (Suriname): I. Petrological and geochronological evidence for a counterclockwise P-T path at 2.07~2.05Ga. Géollogie de la France, 2-3-4: 175-205

    [17]

    Dewey JF and Windley BF. 1981. Growth and differentiation of the continental crust. Philosophical Transactions of the Royal Society of London, Series A, 301(1461): 189-206

    [18]

    Diwu CR, Sun Y, Guo AL, Wang HL and Liu XM. 2011. Crustal growth in the North China Craton at ~2.5Ga: Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Research, 20(1): 149-170

    [19]

    Ferrando S, Frezzotti ML, Orione P, Conte RC and Compagnoni R. 2010. Late-Alpine rodingitization in the Bellecombe meta-ophiolites (Aosta Valley, Italian Western Alps): Evidence from mineral assemblages and serpentinization-derived H2-bearing brine. International Geology Review, 52(10-12): 1220-1243

    [20]

    Ferrero S, Bartoli O, Cesare B, Salviol-Mariani E, Acosta-Vigil A, Cavallo A, Groppo C and Battiston S. 2012. Microstructures of melt inclusions in anatectic metasedimentary rocks. Journal of Metamorphic Geology, 30(3): 303-322

    [21]

    Frost BR and Chacko T. 1989. The granulite uncertainty principle: Limitations on thermobarometry in granulites. The Journal of Geology, 97(4): 435-450

    [22]

    Gebauer D, Schertl HP, Brix M and Schreyer W. 1997. 35Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos, 41(1-3): 5-24

    [23]

    Gerdes A and Zeh A. 2009. Zircon formation versus zircon alteration: New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology, 261(3-4): 230-243

    [24]

    Gou LL, Zhang CL, Zhang LF and Wang Q. 2014. Precipitation of rutile needles in garnet from sillimanite-bearing pelitic granulite from the Khondalite Belt, North China Craton. Chinese Science Bulletin, 59(32): 4359-4366

    [25]

    Griffin WL, Peason NJ, Belousova E, Jackson SE, van Achterbergh E, O\'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147

    [26]

    Griffin WL, Belousova EA, Shee SR, Pearson NJ and O\'Reilly SY. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282

    [27]

    Groppo C, Rolfo F and Indares A. 2012. Partial melting in the Higher Himalayan Crystallines of Eastern Nepal: The effect of decompression and implications for the‘channel flow’model. Journal of Petrology, 53(5): 1057-1088

    [28]

    Guo JH, O\'Brien PJ and Zhai MG. 2002. High-pressure granulites in the Sanggan area, North China Craton: Metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741-756

    [29]

    Guo JH, Sun M, Chen FK and Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24(5): 629-642

    [30]

    Guo SS and Li SG. 2009. SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China Craton. Science in China (Series D), 52(8): 1039-1045

    [31]

    Harley SL. 1989. The origins of granulites: A metamorphic perspective. Geological Magazine, 126(3): 215-247

    [32]

    Hawkesworth CJ and Kemp AIS. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3-4): 144-162

    [33]

    Hermann J, Rubatto D, Korsakov A and Shatsky VS. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82

    [34]

    Hermann J and Rubatto D. 2003. Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology, 21(9): 833-852

    [35]

    Holness MB and Sawyer EW. 2008. On the pseudomorphing of melt-filled pores during the crystallization of migmatites. Journal of Petrology, 49(7): 1343-1363

    [36]

    Hou GT, Liu YL and Li JH. 2006. Evidence for 1.8Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401

    [37]

    Hou GT, Li JH, Yang MH, Yao WH, Wang CC and Wang YX. 2008. Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China Craton. Gondwana Research, 13(1): 103-116

    [38]

    Iizuka T, Hirata T, Komiya T, Rino S, Katayama I, Motoki A and Maruyama S. 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology, 33(6): 485-488

    [39]

    Jahn BM, Vidal P and Kröner A. 1984. Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland: A case for long crustal residence time. Contributions to Mineralogy and Petrology, 86(4): 398-408

    [40]

    Jahn BM, Liu DY, Wan YS, Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3): 232-269

    [41]

    Jiang N, Guo JH, Zhai MG and Zhang SQ. 2010. ~2.7Ga crust growth in the North China craton. Precambrian Research, 179(1-4): 37-49

    [42]

    Jiang N, Guo JH and Chang GH. 2013. Nature and evolution of the lower crust in the eastern North China craton: A review. Earth-Science Reviews, 122: 1-9

    [43]

    Kemp AIS, Foster GL, Scherstén A, Whitehouse MJ, Darling J and Storey C. 2009. Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chemical Geology, 261(3-4): 244-260

    [44]

    Klavera M, De Roever EWF, Nanne JAM, Mason PRD and Davies GR. 2015. Charnockites and UHT metamorphism in the Bakhuis Granulite Belt, western Suriname: Evidence for two separate UHT events. Precambrian Research, 262: 1-19

    [45]

    Kotková J and Harley SL. 2010. Anatexis during high-pressure crustal metamorphism: Evidence from garnet-whole-rock REE relationships and zircon-rutile Ti-Zr thermometry in leucogranulites from the Bohemian Massif. Journal of Petrology, 51(10): 1967-2001

    [46]

    Kröner A, Wilde SA, Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595

    [47]

    Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397

    [48]

    Li SG, Wang SJ, Guo SS, Xiao YL, Liu YC, Liu SA, He YS and Liu JL. 2014. Geochronology and geochemistry of leucogranites from the southeast margin of the North China Block: Origin and migration. Gondwana Research, 26(3-4): 1111-1128

    [49]

    Li SZ and Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1-16

    [50]

    Li SZ, Zhao GC, Santosh M, Liu X, Dai LM, Suo YH, Song MC and Wang PC. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200-203: 59-73

    [51]

    Li XP, Rahn M and Bucher K. 2004. Metamorphic processes in rodingites of the Zermatt-Saas ophiolites. International Geology Review, 46(1): 28-51

    [52]

    Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of 3800Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4): 339-342

    [53]

    Liu F, Guo JH, Peng P and Qian Q. 2012a. Zircon U-Pb ages and geochemistry of the Huai\'an TTG gneisses terrane: Petrogenesis and implications for ~2.5Ga crustal growth in the North China Craton. Precambrian Research, 212-213: 225-244

    [54]

    Liu FL, Gerdes A, Liou JG, Xue HM and Liang FH. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology, 24(7): 569-589

    [55]

    Liu FL, Liu PH, Ding ZJ, Liu JH, Yang H and Hu WH. 2012. Genetic mechanism of granitic leucosome within high-pressure granulite from the Early Precambrian metamorphic basement of Shandong Peninsula, SE North China Craton. Acta Petrologica Sinica, 28(9): 2686-2696 (in Chinese with English abstract)

    [56]

    Liu FL, Wang F, Liou JG, Meng E, Liu JH, Yang H, Xiao LL, Cai J and Shi JR. 2014a. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating. Journal of Asian Earth Sciences, 94: 205-225

    [57]

    Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F and Meng E. 2013a. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 287-303

    [58]

    Liu L and Yang XY. 2013. Geochemical characteristics of the Huoqiu BIF ore deposit in Anhui Province and their metallogenic significance: Taking the Bantaizi and Zhouyoufang deposits as examples. Acta Petrologica Sinica, 29(7): 2551-2566 (in Chinese with English abstract)

    [59]

    Liu L, Yang XY, Santosh M and Aulbach S. 2014b. Neoarchean to Paleoproterozoic continental growth in the southeastern margin of the North China Craton: Geochemical, zircon U-Pb and Hf isotope evidence from the Huoqiu complex. Gondwana Research, doi: 10.1016/j.gr.2014.08.011

    [60]

    Liu L and Yang XY. 2015. Temporal, environmental and tectonic significance of the Huoqiu BIF, southeastern North China Craton: Geochemical and geochronological constraints. Precambrian Research, 261: 217-233

  • 加载中
计量
  • 文章访问数:  10323
  • PDF下载数:  5366
  • 施引文献:  0
出版历程
收稿日期:  2015-03-22
修回日期:  2015-05-28
刊出日期:  2015-10-31

目录