安徽铜陵新桥铜硫金矿床的成因:来自两类黄铁矿微形貌学、地球化学特征的证据

肖鑫, 周涛发, 范裕, 谢杰, 张乐骏. 安徽铜陵新桥铜硫金矿床的成因:来自两类黄铁矿微形貌学、地球化学特征的证据[J]. 岩石学报, 2016, 32(2): 369-376.
引用本文: 肖鑫, 周涛发, 范裕, 谢杰, 张乐骏. 安徽铜陵新桥铜硫金矿床的成因:来自两类黄铁矿微形貌学、地球化学特征的证据[J]. 岩石学报, 2016, 32(2): 369-376.
XIAO Xin, ZHOU TaoFa, FAN Yu, XIE Jie, ZHANG LeJu. LA-ICP-MS in situ trace elements and FE-SEM analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui and its constraints on the ore genesis[J]. Acta Petrologica Sinica, 2016, 32(2): 369-376.
Citation: XIAO Xin, ZHOU TaoFa, FAN Yu, XIE Jie, ZHANG LeJu. LA-ICP-MS in situ trace elements and FE-SEM analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui and its constraints on the ore genesis[J]. Acta Petrologica Sinica, 2016, 32(2): 369-376.

安徽铜陵新桥铜硫金矿床的成因:来自两类黄铁矿微形貌学、地球化学特征的证据

  • 基金项目:

    本文受国家自然科学基金项目(41320104003、41172086、41172084、40830426)、中国地质调查局地质调查工作项目(1212011121115、1212011220243、12120114039701)、国家深部专项(SinoProbe-03-02-05)和安徽省公益性地质工作项目(2011-20)联合资助.

详细信息

LA-ICP-MS in situ trace elements and FE-SEM analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui and its constraints on the ore genesis

More Information
  • 新桥矿床是长江中下游成矿带铜陵矿集区内大型铜金硫矿床。本文以矿床中的黄铁矿为研究对象,在详细的野外观察和室内鉴定的基础上,将矿床中的黄铁矿分为胶状黄铁矿(PyI)和半自形-自形黄铁矿(PyⅡ)两种类型。通过场发射扫描电镜(FE-SEM)和等离子激光质谱(LA ICP-MS)对两类黄铁矿的矿物相、形貌、微结构和微量元素成分进行研究。FE-SEM分析结果表明,PyI基本由极细粒黄铁矿组成,以自形-半自形立方体晶形为主,粒径大约100~500nm,而PyⅡ主要为粒度为50~100μm,以八面体和五角十二面体晶形态为主,两类黄铁矿的形貌和微结构特征明显不同。LA-ICP-MS分析测试显示,PyI中相对富含As、Se、Te等元素,而PyⅡ中成矿元素Cu、Pb、Zn、Au、Ag的含量则比PyI型黄铁矿明显偏高,分别为792.0×10-6、2125×10-6、1.67×10-6、0.29×10-6和190.7×10-6,且Bi、Co、Ni、V、Ti、Mg、Cr、Cd、Al、Mn等微量元素含量较PyI均明显偏高1~2个数量级。在综合分析黄铁矿的结构形态和微量元素组成特征的基础上,本文认为PyI可能形成于晚古生代海底热水沉积环境, PyⅡ形成于中生代岩浆热液环境。新桥铜金硫多金属矿床的成矿作用包括了海西期同生沉积成矿作用和燕山期与岩浆活动有关的热液成矿作用。晚侏罗世-早白垩世广泛发育的强烈岩浆侵入及与之有关的热液活动,对矿床的最终形成起了主导作用,提供了Cu、Au等主要成矿物质。
  • 加载中
  • [1]

    Barrie CD, Boyle AP, Cook NJ and Prior DJ. 2010. Pyrite deformation textures in the massive sulfide ore deposits of the Norwegian Caledonides. Tectonophysics, 483(3-4):269-286

    [2]

    Chang YF, Liu XP and Wu YC. 1991. Fe-Cu Metallogenic Belt in the Lower Yangtze River. Beijing:Geolgical Publishing House, 1-379(in Chinese with English abstract)

    [3]

    Chang YF, Zhou TF and Fan Y. 2012. Polygenetic compound mineralization and tectonic evolution:Study in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 28(10):3067-3075(in Chinese with English abstract)

    [4]

    Chen YP, Wei CJ, Zhang JR and Chu H. 2015. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19):1698-1707

    [5]

    Ciobanu CL, Cook NJ, Utsunomiya S, Kogagwa M, Green L, Gilbert S and Wade B. 2012. Gold-telluride nanoparticles revealed in arsenic-free pyrite. American Mineralogist, 97(8-9):1515-1518

    [6]

    Cook NJ, Ciobanu CL and Mao JW. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton(Hebei Province, China). Chemical Geology, 264(1-4):101-121

    [7]

    Gu LX and Xu KQ. 1986. On the Carboniferous submarine massive sulphide deposits in the Lower Reaches of the Changjiang(Yangzi) River. Acta Geologica Sinica,(2):176-188(in Chinese with English abstract)

    [8]

    Guo WM, Lu JJ, Zhang RQ, Zhao ZJ and Xu ZW. 2011a. The superimposed mineralization of the Dongguashan Cu deposit in Tongling area, Anhui Province:Evidence from the ore texture. Acta Geologica Sinica, 85(7):1223-1232(in Chinese with English abstract)

    [9]

    Guo WM, Lu JJ, Jiang SY, Zhang RQ and Qi L. 2011b. Re-Os isotope dating of pyrite from the footwall mineralization zone of the Xinqiao deposit, Tongling, Anhui Province:Geochronological evidence for submarine exhalative sedimentation. Chinese Scienec Bulletin, 56(36):3860-3865

    [10]

    Hou ZQ, Yang ZS, Lü QT, Zeng PS, Xie YL, Meng YF, Tian SH, Xu WY, Li HY, Jiang ZP, Wang XC and Yao XD. 2011. The large-scale Dongguashan deposit, Shizishan district in East China:Carboniferous sedex-type massive sulfides overprinted by Late Jurassic skarn Cu mineralization. Acta Geologica Sinica, 85(5):659-686(in Chinese with English abstract)

    [11]

    Large RR, Maslennikov VV, Robert V, Danyushevsky LV and Chang ZS. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena Gold Province, Russia. Economic Geology, 102(7):1233-1267

    [12]

    Li HY, Li YJ, Hou ZQ, Yang ZS, Meng YF, Zeng PS and Xu WY. 2005. Geochemical features of the Xinqiao massive sulfide deposit in Anhui Province. Chinese Journal of Geology, 40(3):337-345(in Chinese with English abstract)

    [13]

    Li WD, Wang WB, Fan HY, Dong P, Zhou TF and Xie HG. 1997. The conditions to form copper(gold) ore deposit concentrated areas and the possibilities to discover supergigantic copper(gold) ore deposit in the Middle-Lower Yangtze area. Volcanology and Mineral Resources, 20(Suppl.1):1-131(in Chinese with English abstract)

    [14]

    Liang JF, Xu XC, Xiao QX and Wang P. 2011. LA-ICP-MS in situ trace element analysis of pyrite from Dongguashan Cu-Au deposit in Tongling, Anhui, and its constraints on the ore genesis. Acta Minalogica Sinica,(Suppl.1):1011-1012(in Chinese)

    [15]

    Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2):109-119(in Chinese with English abstract)

    [16]

    Meng YF, Yang ZS, Zeng PS, Xu WY and Wang XC. 2004. Tentative temporal constraints of ore-forming fluid systems in Tongling metallogenic province. Mineral Deposits, 23(3):271-280(in Chinese with English abstract)

    [17]

    Mitolo D, Capitani GC, Garavelli A and Pinto D. 2011. Transmission electron microscopy investigation of Ag-free lillianite and heyrovskyite from Volcano, Aeolian Islands, Italy. American Mineralogist, 96(2-3):288-300

    [18]

    Suits NS and Wilkin RT. 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology, 26(12):1099-1102

    [19]

    Tang YC, Wu YC and Chu GZ. 1998. Geology of Copper-gold Ploymetallic Deposits in the Yangtze River Area, Anhui Pr ovince. Beijing:Geological Pubishing House(in Chinese with English abstract)

    [20]

    Wang L, Shi XY and Jiang GQ. 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 333-334:218-227

    [21]

    Wang PK, Huang YJ, Wang CS, Feng ZH and Huang QH. 2013. Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecolog, 385:125-136

    [22]

    Wang WB, Li WD, Dong P and Xie HG. 1994. The genesis of cupriferous pyrite deposit, Middle-Lower Yangtze area, eastern China. Volcanology and Mineral Resources, 15(2):25-34(in Chinese with English abstract)

    [23]

    Wang YB, Liu DY, Meng YF, Zeng PS, Yang ZS and Tian SH. 2004. SHRIMP U-Pb geochronology of the Xinqiao Cu-S-Fe-Au deposit in the Tongling ore district, Anhui. Geology in China, 31(2):169-173(in Chinese with English abstract)

    [24]

    Wilkin RT, Barnes HL and Brantley SL. 1996. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20):3897-3912

    [25]

    Wilkin RT and Barnes HL. 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2):323-339

    [26]

    Wilkin RT, Arthur MA and Dean WE. 1997. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet. Sci. Lett., 148(3-4):517-525

    [27]

    Xie GH, Wang WB and Li WD. 1995. The genesis and metallogenetic epoch of Xinqiao Cu-S deposit, Anhui. Volcanology and Mineral Resources, 16(2):101-107(in Chinese with English abstract)

    [28]

    Xie J. 2012. Study on the pyrite and the implication for genesis of Xinqiao deposit, Anhui Province. Master Degree Thesis. Hefei:Hefei University of Technology, 1-121(in Chinese)

    [29]

    Xie JC, Yang XY, Du JG, Du XW, Xiao YL, Qu WJ and Sun WD. 2009. Re-Os precise dating of pyrite from the Xinqiao Cu-Au-Fe-S deposit in Tongling, Anhui and its implications for mineralization. Chinese Journal of Geology, 44(1):183-192(in Chinese with English abstract)

    [30]

    Xie QQ, Chen TH, Fan ZL, Xu XC, Zhou YF, Shi WB and Xie JJ. 2014. Morphological characteristics and genesis of colloform pyrite in Xinqiao Fe-S deposit, Tongling, Anhui Province. Scientia Sinica(Terrae), 44(12):2665-2674(in Chinese)

    [31]

    Xu G and Zhou J. 2001. The Xinqiao Cu-S-Fe-Au deposit in the Tongling mineral district, China:Synorogenic remobilization of a stratiform sulfide deposit. Ore Geology Reviews, 18(1-2):77-94

    [32]

    Yang S, Du YS, Cao Y, Zhang ZY and Liu SF. 2012. Forming process of Dongguashan stratabound skarn Cu deposit in Tongling, Anhui Province:Evidence from pyrrhotite. Geoscience, 24(1):54-60(in Chinese with English abstract)

    [33]

    Zang WS, Wu GG, Zhang D and Liu AH. 2004. Xinqiao iron ore-field in Tongling, Anhui:Geological and geochemical characteristics and genesis. Geotectonica et Metallogenia, 28(2):187-193(in Chinese with English abstract)

    [34]

    Zhang Y, Shao YJ, Liu ZF, Peng NH and Zheng MH. 2014. Geological ore-formation conditions and genesis of Xinqiao Cu-S-Fe deposit, Tongling, Anhui Province. Journal of Central South University(Science and Technology), 45(10):3489-3498(in Chinese with English abstract)

    [35]

    Zhou CM and Jiang SY. 2009. Palaeoceanographic redox environments for the Lower Cambrian Hetang Formation in South China, evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3-4):279-286

    [36]

    Zhou TF, Zhang LJ, Yuan F, Fan Y and Cooke DR. 2010. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao deposit Cu-Au-S deposit in Tongling, Anhui, and its constraints on the ore genesis. Earth Science Frontiers, 17(2):306-319(in Chinese with English abstract)

    [37]

    常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京:地质出版社, 1-379

    [38]

    常印佛, 周涛发, 范裕. 2012. 复合成矿与构造转换——以长江中下游成矿带为例. 岩石学报, 28(10):3067-3075

    [39]

    顾连兴, 徐克勤. 1986. 论长江中下游石炭世海底块状硫化物矿床. 地质学报,(2):176-188

    [40]

    郭维民, 陆建军, 章荣清, 招湛杰, 徐兆文. 2011a. 安徽铜陵冬瓜山铜矿床的叠加改造成矿机制:来自矿石结构的证据. 地质学报, 85(7):1223-1232

    [41]

    郭维民, 陆建军, 蒋少涌, 章荣清, 漆亮. 2011b. 安徽铜陵新桥矿床下盘矿化中黄铁矿Re-Os同位素定年:海底喷流沉积成矿的年代学证据. 科学通报, 56(36):3023-3028

    [42]

    侯增谦, 杨竹森, 吕庆田, 曾普胜, 谢玉玲, 蒙义峰, 田世洪, 徐文艺, 李红阳, 姜章平, 王训成, 姚孝德. 2011. 安徽铜陵冬瓜山大型铜矿:海底喷流-沉积与矽卡岩化叠加复合成矿过程. 地质学报, 85(5):659-686

    [43]

    李红阳, 李英杰, 侯增谦, 杨竹森, 蒙义峰, 曾普胜, 徐文艺. 2005. 安徽新桥块状硫化物矿床地球化学特征. 地质科学, 40(3):337-345

    [44]

    李文达, 王文斌, 范洪源, 董平, 周涛发, 谢华光. 1997. 长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性. 火山地质与矿产, 20(增刊):1-131

    [45]

    梁建峰, 徐晓春, 肖秋香, 王萍. 2011. 安徽铜陵冬瓜山铜金矿床黄铁矿微量元素原位 LA-ICP-MS分析及其成矿意义. 矿物学报,(增刊):1011-1012

    [46]

    毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2):109-119

    [47]

    蒙义峰, 杨竹森, 曾普胜, 徐文艺, 王训成. 2004. 铜陵矿集区成矿流体系统时限的初步厘定. 矿床地质, 23(3):271-280

    [48]

    唐永成, 吴言昌, 储国正. 1998. 安徽沿江地区铜金多金属矿床地质. 北京:地质出版社

    [49]

    王文斌, 李文达, 董平, 谢华光. 1994. 论长江中下游地区含铜黄铁矿型矿床成因. 火山地质与矿产, 15(2):25-34

    [50]

    王彦斌, 刘敦一, 蒙义峰, 曾普胜, 杨竹森, 田世洪. 2004. 安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义. 中国地质, 31(2):169-173

    [51]

    谢光华, 王文斌, 李文达. 1995. 安徽新桥铜硫矿床成矿时代及成矿物质来源. 火山地质与矿产, 16(2):101-107

    [52]

    谢杰. 2012. 安徽新桥矿床黄铁矿研究及其对矿床成因的指示. 硕士学位论文. 合肥:合肥工业大学, 1-121

    [53]

    谢建成, 杨晓勇, 杜建国, 杜小伟, 肖益林, 屈文俊, 孙卫东. 2009. 安徽铜陵新桥 Cu-Au-Fe-S 矿床黄铁矿 Re-Os 定年及成矿意义. 地质科学, 44(1):183-192

    [54]

    谢巧勤, 陈天虎, 范子良, 徐晓春, 周跃飞, 石文兵, 谢晶晶. 2014. 铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨. 中国科学(地球科学), 44(12):2665-2674

    [55]

    杨爽, 杜杨松, 曹毅, 张智宇, 刘绍锋. 2012. 安徽铜陵冬瓜山层控矽卡岩铜矿床形成过程——来自磁黄铁矿的证据. 现代地质, 24(1):54-60

    [56]

    臧文拴, 吴淦国, 张达, 刘爱华. 2004. 铜陵新桥铁矿田地质地球化学特征及成因浅析. 大地构造与成矿学, 28(2):187-193

    [57]

    张宇, 邵拥军, 刘忠法, 彭南海, 郑明泓. 2014. 安徽铜陵新桥铜硫铁矿床成矿地质条件及矿床成因分析. 中南大学学报(自然科学版), 45(10):3489-3498

    [58]

    周涛发, 张乐俊, 袁峰, 范裕, Cooke DR. 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约. 地学前缘, 17(2):306-319

  • 加载中
计量
  • 文章访问数:  6028
  • PDF下载数:  7713
  • 施引文献:  0
出版历程
收稿日期:  2014-07-07
修回日期:  2015-05-05
刊出日期:  2016-02-29

目录