云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约

李文博[1,2] 黄智龙 张冠. 云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约[J]. 岩石学报, 2006, 22(10): 2567-2580.
引用本文: 李文博[1,2] 黄智龙 张冠. 云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约[J]. 岩石学报, 2006, 22(10): 2567-2580.
LI Wenbo, HUANG Zhilong, ZHANG Guan. Sources of the ore metals of the Huize ore field in Yunnan province: constraints from Pb, S, C, H, O and Sr isotope geochemistry[J]. Acta Petrologica Sinica, 2006, 22(10): 2567-2580.
Citation: LI Wenbo, HUANG Zhilong, ZHANG Guan. Sources of the ore metals of the Huize ore field in Yunnan province: constraints from Pb, S, C, H, O and Sr isotope geochemistry[J]. Acta Petrologica Sinica, 2006, 22(10): 2567-2580.

云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约

  • 基金项目:

    本文得到国家自然科学基金项目(编号40502011,40372048和40425006)和中国博士后基金(编号2005037002)的资助. 致谢野外工作得到了云南会泽铅锌矿地质科同行的大力支持,蒋少涌、薛春纪、韩润生、陈衍景、赖勇等教授、李朝阳和许成研究员、祁进平博士等对论文初稿提出了许多宝贵修改意见,特此致谢!

Sources of the ore metals of the Huize ore field in Yunnan province: constraints from Pb, S, C, H, O and Sr isotope geochemistry

  • 云南会泽铅锌矿田是我国著名的超大型特富铅锌矿田之一,由相距3公里的矿山厂和麒麟厂两个独立的矿床组成,Zn+Pb金属量超过五百万吨,矿石品位在25%至35%之间。为确定矿床成矿流体和成矿金属来源,本文系统研究了矿床的Ph、S、C、O、H和Sr同位素组成特征。矿石硫化物的铅N位素组成均一,^206Pb/^204Pb,^207Pb/^204Pb和。^206Pb/^204Pb的变化范围分别为18.251~18.530,15.663~15.855和38.487~39.433,与围岩碳酸盐岩中浸染状黄铁矿一致,与碳酸盐地层相近,在^208Pb/^204Pb-^206Pb/^204Pb图上显示明显的线性关系,表明铅N位素组成相近的碳酸盐围岩地层提供了成矿物质。矿石硫化物的δ^14S变化范围为10.9‰~17.4‰,多数集中于13‰~17‰,表明还原硫主要来自地层中海相硫酸盐的还原,还原方式为热化学还原,下伏页岩、碎屑岩和泥质岩中的有机质在硫酸盐还原过程中发挥了重要作用。三种不同产状的脉石矿物方解石的碳氧同位素组成均一且没有明显差别,δ^13C变化范围为-2.1‰~-3.5‰, δ^18O为16.8‰~18.6‰。脉石矿物方解石中流体包裹体水的δDFI为-50‰~-60‰,取温度为200℃计算包裹体水的δ^18OH2O值为7.0‰~8.8‰。碳、氧和氢、氧同位素研究结果表明,成矿流体为来自下部上升的变质流体,由于下伏页岩、碎屑岩和泥质岩中有机质的参与,成矿流体具有低的δ^13C和δ^13DFI值,在上升过程中与围岩发生了同位素交换。矿石中黄铁矿、闪锌矿和方解石的初始锶同位素组成(^87Sr/^86Sr).值的变化范围为0.714~0.717,赋矿围岩中未蚀变白云岩的初始锶同位素组成(^87Sr/^86Sr).值为0.7083~0.7093,明显低于蚀变白云岩(0.7106),表明成矿流体具有高的(^87Sr/^86Sr),比值。相对围岩碳酸盐岩而言,下伏地层中的页岩、碎屑岩和泥质岩往往具有高得多的^87Sr/^86Sr,因此,流经或者起源于这些地层的流体具有高的锶同位素比值。
  • 加载中
  • [1]

    陈进.1993.麒麟厂铅锌硫化矿矿床成因及成矿模式探讨.有色金属矿床与勘查,2(2):85-89

    [2]

    Canals A,Cardellach E.1997. Ore lead and sulphur isotope pattern from the low-temperature veins of the Catalonian Coastal Ranges (NE Spain).Mineralium Deposita,32:243-249

    [3]

    韩润生.2002.会泽超大型银铅锌矿床地质地球化学及隐伏矿定位预测.中国科学院地球化学研究所博士后研究报告

    [4]

    Cheilletz A,Giuliani G.1996. The genesis of Colombian emeralds:A restatement.Mineralium Deposita,31:359-364

    [5]

    胡耀国.2000.贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制.中国科学院地球化学研究所博士学位论文

    [6]

    Chen J.1993. Genesis and metalogenic pattern of the Qilingchang Pb-Zn deposit.Geological exploration for Non-ferrous Metals,2:85 -89(in Chinese with English abstract)

    [7]

    Chen YJ,Pirajno F,Sui YH.2004. Isotope geochemistry of the Tieluping silver deposit,Henan,China:A case study of orogenic silver deposits and related tectonic setting.Mineralium Deposita,39:560-575

    [8]

    黄智龙,陈进,韩润生等.2001.云南会泽超大型铅锌矿脉石矿物方解石REE地球化学.矿物学报,21(4):659-666

    [9]

    Chen YJ,Pirajno F,Sui YH.2005. Geology and D-O-C isotope systematics of the Tieluping silver deposit,Henan,China:Implications for ore genesis.Acta Geologica Sinica,79:106 -119

    [10]

    Czamanske G K,Rye R O.1974. Experimentally determined sulfur isotope fractionations between sphalerite and galena in the temperature range 600℃ to 275℃.Economic Geology,69:17-25

    [11]

    Dejonghe J,Boulégue J,Demaffe D,Létolle R.1989. Isotope geochemistry (S,C,O,Sr,Pb) of the Chaudfontaine mineralization (Belgium).Mineralium Deposita,24:132 -134

    [12]

    Dennis P F,Rowe P J,Atkinson T C.2001. The recovery and isotopic measurement of water from fluid inclusions in speleothems.Geochimica et Cosmochimica Acta,65:871 -884

    [13]

    deRonde C E J,Spooner E T C,de Wit M J,Bray C J.1992. Shear zone-related Au quartz vein deposits in the Barberton greenstone belt,South Africa:Field and petrological characteristics,fluid properties,and light stable isotope geochemistry.Economic Geology,88:366-402

    [14]

    Ding TP,Jiang SY.2000. Stable isotope study of the Langshan polymetallic mineral district,Inner Mongolia,China.Resource Geology,50:25-38

    [15]

    Faure K.2003.δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems:Do values reflect those of original hydrothermal water? Economic Geology,98:657 -660

    [16]

    Friedman I,Oneil J R.1977. Compilation of stable isotope fractionation fraction factors of geochemical interest.In:Fleischer M,ed.Data of geochemistry-Sixth Edition.Geology Survey Professional Paper,117-117

    [17]

    Gavrielli I,Starinsky A,Spiro B,Aizenshtat A,Nielsen H.1995. Mechanisms of sulphate removal from subsurface calcium chloride brines,Heletz-Kokhav oilfields,Israel.Geochimica et Cosmochimica Acta,59:3525-3533

    [18]

    Goldfarb R J,Leach D L,Rose S C,Landis G P.1989. Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt,southeastern Alaska:Implications for ore genesis.Economic Geology Monograph,6:363-375

    [19]

    Goldfarb R J,Newberry R J,Pickthorn W J,Gent C A.1991. Oxygen,hydrogen,and sulfur isotope studies in the Juneau gold belt,southeastern Alaska:Constraints on the origin of hydrothermal fluids.Economic Geology,86:66-80

    [20]

    Goldfarb R J,Miller L D,Leach D L,Snee L W.1997. Gold deposits in metamorphic rocks of Alaska.Economic Geology Monograph,9:151-190

    [21]

    Goldfarb R J,Ayuso R,Miller M L,Ebert S W,Marsh E E,Petsel S A,Miller L D,Bradley D,Johnson C,McCleland W.2004. The Late Cretaceous Donlin Creek Gold Deposit,Southwestern Alaska:Controls on Epizonal Ore Formation.Economic Geology,99:643 -671

    [22]

    Golding S D,McNaughton N J,Barley M E,Groves D I,Ho S E,Rock N M S,Turner J V.1989. Archean carbon and oxygen reservoirs:Their significance for fluid sources and circulation paths for Archean mesothermal gold deposits of the Norseman-Wiluna belt,Western Australia.Economic Geology Monograph,6:376-388

    [23]

    Han R S.2002. Characteristics of geology and geochemistry and prognosis of concealed ores in the Huize super-large Zn-Pb-(Ag) district,Yunnan,China.Unpublished Post-doctorate report of the Institute of Geochemistry,Chinese Academy of Sciences.99p (in Chinese with English abstract)

    [24]

    Han R S,Liu C Q,Huang Z L,Ma D Y,Li Y,Hu B,Ma G S,Lei L.2004. Fluid inclusions of calcite and sources of ore-forming fluids in the Huize Zn-Pb-(Ag-Ge) district,Yunnan,China.Acta Geologica Sinica,78:583-591

    [25]

    Hou M,Ding X,Jiang S.2004. Lead and Sulfur Isotope Geochemistry of the Hexi Gold Deposit in Penglai,Jiaodong,Acta Geoscientica Sinica,25:145-150

    [26]

    Hu Y G.2000. Preserving State,Source of Ore-forming Substances and Ore-forming Mechanism of Rich Ag Metallic Deposit in Yinchangpo,Guizhou province,China.Unpublished Ph.D.thesis of the Institute of Geochemistry,Chinese Academy of Sciences,159p.(in Chinese with English abstract)

    [27]

    Huang Z L,Chen J,Han R S,Li W B,Gao D R,Zhao D S,Liu C Q.2001. REE geochemistry of calcite-a gangue mineral in the Huize ore deposit,Yunnan.Acta Mineralogica Sinica,21:659 -666 (in Chinese with English abstract)

    [28]

    Hoefs J.1997. Stable isotope geochemistry.4th edition,SpringerVerlag,Berlin,201p

    [29]

    Holser W T,Magaritz M,Ripperdan R L.1996. Global isotopic events.In:Global Events and Event Stratigraphy in the Phanerzoic (ed O H Walliser),Springer-Verlag,Berlin,63-88

    [30]

    Ivanov S M,Ansdell K M,Melrose D L.2000. Ore texture and stable isotope constraints on ore deposition mechanisms at the Kumtor lode gold deposit,in:Bucci LA and Mair JL (eds.).Gold in 2000:Lake Tahoe-Reno,Nevada,November 10 -11,2000,Centre for Global Metallogeny,University of Western Australia,Extended Abstract Volume,47-52

    [31]

    Jia Y F,Li X,Kerrich R.2001. Stable Isotope (O,H,S,C,and N)Systematics of Quartz Vein Systems in the Turbidite-Hosted Central and North Deborah Gold Deposits of the Bendigo Gold Field,Central Victoria,Australia:Constraints on the Origin of Ore-Forming Fluids.Economic Geology,96:705-721

    [32]

    Jiang SY,Han F,Shen JZ,Palmer MR.1999. Chemical and Sr-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit,Guangxi Province,China.Chemical Geology,157:49-67

    [33]

    Jiang SY,Yang T,Li L et al.2006. Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field,MidAtlantic Ridge.Acta Petrologica Sinica,22(10):2597 -2602

    [34]

    Jiang SY,Zhao KD,Jiang YH et al.2006. A new type of tin mineralization related to granite in South China:evidence from mineral chemistry,element and isotope geochemistry.Acta Petrologica Sinica,22 (10):2509-2516

    [35]

    Jorgenson B B,Isaksen M F,Jannasch H W.1992. Bacterial sulfate reduction above 100℃ in deep sea hydrothermal vent sediments.Science,258:1756-1757

    [36]

    Kerrich R.1987. The stable isotope geochemistry of Au-Ag vein deposits in metamorphic rocks.Mineralogical Association of Canada Short Course Handbook,13:287-336

    [37]

    Kontak D J,Kerrich R.1995. Geological and geochemical studies of a metaturbidite-hosted lode gold deposits:the Beaver Dam deposit,Nova Scotia:Ⅱ.Isotopic studies.Economic Geology,90:885 -901

    [38]

    Li C Y,Liu Y P,Zhang Q et al.2005. Discovery of antimony and distribution characteristics of associated elements in Huize Pb-Zn deposit.Mineral Deposits,24:52-60 (in Chinese with English abstract)

    [39]

    Li L J,Liu H T,Liu J S.1999. A discussion on the source bed of Pb-Zn-Ag deposits in Northeast Yunnan.Geological Exploration for Nonferrous Metals,8:333 -339 (in Chinese with English abstract)

    [40]

    Li W B,Huang Z L,Chen J et al.2002. Sources of ore-forming materials of the giant Huize Zn-Pb deposit,Yunnan Province:Evidence from contents of ore-forming elements in the wall rocks and Emeishan Basalt in this district.Mineral Deposits (supplement),21:413 -416 (in Chinese with English abstract)

    [41]

    Li W B.2004. Age and Geochemistry of the Giant Huize Zinc-lead deposit,Yunnan Province.Unpublished Ph.D.thesis of the Institute of Geochemistry,Chinese Academy of Sciences,130 (in Chinese with English abstract)

    [42]

    Li W B,Qi L,Huang Z L et al.2006. REE geochemistry of sulfide from the Huize Zn-Pb orefield,Yunnan Province:Implication for the sources of ore-forming fluid and metal.Acta Geologica Sinica,(in press)

    [43]

    Liao W.1984. Mineralization model and the characters of isotope composition of S and Pb in the Pb-Zn metallic area in the East and West Yunnan Province,China.Geology and Prospecting,1:1-6(in Chinese with English abstract)

    [44]

    Liu H C,Lin W D.1999. Study on the law of Pb-Zn-Ag ore deposit in Northeast Yunnan,China.Kunming:Yunnan University Press,455(in Chinese)

    [45]

    Machel H G.1989. Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis,hydrocarbon accumulations,salt domes,and metal sulphide deposits.Carbonates Evaporites,4:137-151

    [46]

    McCuaig T C,Kerrich R.1998. P-T-t-deformation-fluid characteristics of lode gold Deposits:Evidence from alteration systematics.Ore Geology Reviews,12:381-453

    [47]

    Oberthur T U,Mumm A S,Vetter U et al.1996. Gold mineralization in the Ashanti belt of Ghana:Genetic constraints of the stable isotope geochemistry.Economic Geology,91:289 -302

    [48]

    Ohmoto H,Rye R O.1979. Isotopes of sulfur and carbon,in Barnes H L,ed.,Geochemistry of hydrothermal ore deposits,2nd edition,New York,J.Wiley and Sons,Inc.,798 p

    [49]

    Ohmoto H.1986. Stable isotope geochemistry of ore deposits.Reviews in mineralogy,6:491-559

    [50]

    Ohmoto H,Kaiser C J,Geer K A.1990. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits.In:H.K Herbert and S.E.Ho (Editors),Stable isotopes and Fluid Processes in Mineralisation.Geol.Dep.Univ.Extens.,Univ.of Western Australia.23:70-120

    [51]

    Ottaway T L,Wicks F J,Bryndzia L T et al.1994. Formation of the Muzo hydrothermal deposit in Colombia.Nature,369:552-554

    [52]

    Rye R O,Ohmoto H.1974. Sulfur and carbon isotopes and ore genesis:A review.Economic Geology,69:826 -842

    [53]

    Rye R O.1974. A comparison of sphalerite-galena sulfur isotope temperatures with filling temperatures of fluid inclusions.Economic Geology,69:26-32

    [54]

    Stacey J S,Kramers J D.1975. Approximation of terrestrial lead isotope evolution by two-stage model.Earth and Planetary Science Letters,26:207-221

    [55]

    Wu NP,Jiang SY,Liao QL et al.2004. Lead and sulfur isotope geochemistry and the ore sources of the vein-type copper deposits in Lanping-Simao Basin,Yunnan Province.Acta Petrologica Sinica,19:799-807

    [56]

    Zartman R E,Haines S M.1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs:A case study for bi-directional transport.Geochimica et Cosmochimica Acta,52:1327-1339

    [57]

    Zhang J,Chen Y J,Chen HY et al.2006. Isotope geochemistry of the Yindongpo gold deposit,Tongbai County,Henan Province,China.Acta Petrologica Sinica,22(10):2551 -2560

    [58]

    Zhang Z L.2006. Feature and sources of ore-forming fluid in the Huize Zn-Pb orefield,Yunnan Provence of China:evidences for fluid inclusions and water-rock reaction experiments.Unpublished Ph.D.thesis of the Institute of Geochemistry,Chinese Academy of Sciences,128p (in Chinese with English abstract)

    [59]

    Zheng Y F,Chen J F.2000. Stable isotope geochemistry.Science Press,Beijing,316p (in Chinese)

    [60]

    Zhou C X,Wei C S,Guo J Y et al.2001. The source of metals in the Qilingchang Pb-Zn deposit,Northeastern Yunnan,China:Pb-Sr isotope constraints.Economic Geology,96:583-598

  • 加载中
计量
  • 文章访问数:  8896
  • PDF下载数:  9802
  • 施引文献:  0
出版历程
收稿日期:  2006-03-02
修回日期:  2006-07-28
刊出日期:  2006-10-31

目录