喜马拉雅东构造结高压麻粒岩PT轨迹、锆石U-Pb定年及其地质意义

刘凤麟, 张立飞. 喜马拉雅东构造结高压麻粒岩PT轨迹、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2014, 30(10): 2808-2820.
引用本文: 刘凤麟, 张立飞. 喜马拉雅东构造结高压麻粒岩PT轨迹、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2014, 30(10): 2808-2820.
LIU FengLin, ZHANG LiFei. High-pressure granulites from Eastern Himalayan Syntaxis: P-T path, zircon U-Pb dating and geological implications[J]. Acta Petrologica Sinica, 2014, 30(10): 2808-2820.
Citation: LIU FengLin, ZHANG LiFei. High-pressure granulites from Eastern Himalayan Syntaxis: P-T path, zircon U-Pb dating and geological implications[J]. Acta Petrologica Sinica, 2014, 30(10): 2808-2820.

喜马拉雅东构造结高压麻粒岩PT轨迹、锆石U-Pb定年及其地质意义

  • 基金项目:

    本文受国家自然科学基金创新群体项目资助(41121062)。

详细信息

High-pressure granulites from Eastern Himalayan Syntaxis: P-T path, zircon U-Pb dating and geological implications

More Information
  • 喜马拉雅东构造结出露了一套基性高压麻粒岩,其峰期矿物组合为石榴石+单斜辉石+石英+金红石+斜长石,利用相平衡计算其峰期温压条件为904℃、1.37GPa,利用锆石U-Pb定年方法确定其变质年龄为20.7±2.3Ma。角闪斜方辉石麻粒岩为其第一阶段退变产物,其变质矿物组合为斜方辉石+角闪石+斜长石+石英+钛铁矿+磁铁矿,温压条件为压力小于0.6GPa,温度为720~760℃。角闪岩相退变矿物组合为角闪石+斜长石+石英+钛铁矿+磁铁矿,温度小于745℃,压力小于0.6GPa。在角闪斜方辉石麻粒岩中变质锆石获得的定年结果为9.38±0.22M,根据锆石中角闪石+斜长石+石英的矿物包体特征,确定该年龄代表角闪岩相退变质年龄。据此,确定了喜马拉雅东构造结基性高压麻粒岩的PTt轨迹为顺时针2阶段折返过程,即第一阶段发生在20Ma左右的由高压麻粒岩相到角闪岩相退变阶段,第二阶段发生在9Ma左右的从角闪岩相深度折返到地表的阶段,计算得到其折返速率分别为2.4mm/y和2.3mm/y,这2个阶段的折返与目前通常认为的青藏高原2个主要抬升阶段是基本一致的。
  • 加载中
  • [1]

    Booth AL, Zeitler PK, Kidd WSF, Wooden J, Liu YP, Idleman B, Hren M and Chamberlain CP. 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. American Journal of Science, 304(10): 889-929

    [2]

    Booth AL, Chamberlain CP, Kidd WSF and Zeitler PK. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. GSA Bulletin, 121(3-4): 385-407

    [3]

    Cloos M. 1982. Flow melanges: Numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California. Geological Society of America Bulletin, 93(4): 330-345

    [4]

    Diener JFA, Powell R, White RW and Holland TJB. 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631-656

    [5]

    Ding L, Zhong DL, Pan YS, Huang X and Wang QL. 1995. Fission tract evidence for the rapid uplift in eastern Himalayan Syntaxis since Pliocene. Chinese Science Bulletin, 40(16): 1497-1500 (in Chinese)

    [6]

    Ding L and Zhong DL. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China (Series D), 42(5): 491-505

    [7]

    Ding L, Zhong DL, Yin A, Kapp P and Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423-438

    [8]

    Ge XH, Ren SM, Ma LX, Wu GD, Liu YJ and Yuan SH. 2006. Multi-stage uplifts of the Qinghai-Tibet Plateau and their environmental effect. Earth Science Frontiers, 13(6): 118-130 (in Chinese with English Abstract)

    [9]

    Green E, Holland T and Powell R. 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. American Mineralogist, 92(7): 1181-1189

    [10]

    Harrison TM, Copeland P, Kidd WSF and Yin A. 1992. Raising Tibet. Science, 255(5052): 1663-1670

    [11]

    Holland T and Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multi-component formulation. Contributions to Mineralogy and Petrology, 145(4): 492-501

    [12]

    Holland TJB and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309-343

    [13]

    Johnson NM, Stix J, Tauxe L, Cerveny PF and Tahirkheli RAK. 1985. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan. The Journal of Geology, 93(1): 27-40

    [14]

    Liu Y and Zhong D. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451-466

    [15]

    Ludwig KR. 2003. User's Manual for Isoplot/Ex Version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 1-70

    [16]

    Pan YS. 1999. Formation and uplifting of the Qinghai-Tibet Plateau. Earth Science Frontiers, 6(3): 153-163 (in Chinese with English abstract)

    [17]

    Powell R and Holland T. 1999. Relating formulations of the thermodynamics of mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and micas. American Mineralogist, 84(1-2): 1-14

    [18]

    Santosh M, Yokoyama K and Acharyya SK. 2004. Geochronology and tectonic evolution of karimnagar and bhopalpatnam granulite belts, Central India. Gondwana Research, 7(2): 501-518

    [19]

    Santosh M, Sajeev K and Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton. Gondwana Research, 10(3-4): 256-266

    [20]

    Schliestedt M and Johannes W. 1984. Melting and subsolidus reactions in the system K2O-CaO-Al2O3-SiO2-H2O: Corrections and additional experimental data. Contributions to Mineralogy and Petrology, 88(4): 403-405

    [21]

    Schlup M, Carter A, Cosca M and Steck A. 2003. Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: The Indus River-Tso Morari transect, NW Himalaya. Journal of the Geological Society, 160(3): 385-399

    [22]

    Searle MP, Cottle JM, Streule MJ and Waters DJ. 2010. Crustal melt granites and migmatites along the Himalaya: Melt source, segregation, transport and granite emplacement mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 219-233

    [23]

    Wang GC, Cao K, Zhang KX, Wang A, Liu C, Meng YN and Xu YD. 2011. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic. Scientia Sinica (Terrae), 41(3): 332-349 (in Chinese)

    [24]

    Wang JM, Zhang JJ and Wang XX. 2013a. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: Implication for a revised channel flow. Journal of Metamorphic Geology, 31(6): 607-628

    [25]

    Wang XX, Zhang JJ, Liu J, Yan SY and Wang JM. 2013b. Middle-Miocene transformation of tectonic regime in the Himalayan orogen. Chinese Science Bulletin, 58(1): 108-117

    [26]

    Watson EB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433

    [27]

    White RW, Powell R, Holland TJB and Worley BA. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497-511

    [28]

    White RW, Powell R and Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25(5): 511-527

    [29]

    Wu FY, Huang BC, Ye K and Fang AM. 2008. Collapsed Himalayan-Tibetan orogeny and the rising Tibetan Plateau. Acta Petrologica Sinica, 24(1): 1-30 (in Chinese with English Abstract)

    [30]

    Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280

    [31]

    Zeng LS, Gao LE, Dong CY and Tang SH. 2012. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet. Gondwana Research, 21(1): 138-151

    [32]

    Zhang JJ, Zhong DL, Ji JQ, Ding L and Sang HQ. 2001. The structural-chronological frame of the Eastern Himalayan Syntaxis since the India-Asia collision and its correlation with the Ailaoshan-Red River structural belt. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 243-244 (in Chinese with English Abstract)

    [33]

    Zhang JJ, Ji JQ, Zhong DL, Sang HQ, He SD. 2002. Structural and chronological evidence for the India-Eurasia collision of the Early Paleocene in the Eastern Himalayan Syntaxis, Namjagbarwa. Acta Geologica Sinica, 76(4): 446-454

    [34]

    Zhang JJ, Ji JQ, Zhong DL, Ding L and He SD. 2003. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Science in China (Series D), 33(4): 373-383 (in Chinese)

    [35]

    Zhao GC, Cawood PA, Wilde SA, and Sun M. 2002. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162

    [36]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1-2): 91-123

    [37]

    Zhang ZM, Zheng LL, Wang JL, Zhao XD and Shi C. 2007. Garnet pyroxenite in the Namjagbarwa Group-complex in the eastern Himalayan tectonic syntaxis, Tibet, China: Evidence for subduction of the Indian continent beneath the Eurasian plate at 80~100km depth. Geological Bulletin of China, 26(1): 1-12 (in Chinese with English Abstract)

    [38]

    Zhang ZM, Wang JL, Zhao GC and Shi C. 2008. Geochronology and Precambrian tectonic evolution of the Namche Barwa complex from the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 24(7): 1477-1487 (in Chinese with English abstract)

    [39]

    Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Liou JG. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719-733

    [40]

    Zhong DL and Ding L. 1996. Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism. Science in China (Series D), 26(4): 289-295 (in Chinese)

    [41]

    丁林, 钟大赉, 潘裕生, 黄萱, 王庆隆. 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 40(16): 1497-1500

    [42]

    葛肖虹, 任收麦, 马立祥, 吴光大, 刘永江, 袁四化. 2006. 青藏高原多期次隆升的环境效应. 地学前缘, 13(6): 118-130

    [43]

    潘裕生. 1999. 青藏高原的形成与隆升. 地学前缘, 6(3): 153-163

    [44]

    王国灿, 曹凯, 张克信, 王岸, 刘超, 孟艳宁, 徐亚东. 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学(D辑), 41(3): 332-349

    [45]

    吴福元, 黄宝春, 叶凯, 方爱民. 2008. 青藏高原造山带的垮塌与高原隆升. 岩石学报, 24(1): 1-30

    [46]

    张进江, 钟大赉, 季建清, 丁林, 桑海清. 2001. 东喜马拉雅构造结大陆碰撞以来构造年代学框架及其与哀牢山-红河构造带的对比. 矿物岩石地球化学通报, 20(4): 243-244

    [47]

    张进江, 季建清, 钟大赉, 丁林, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D辑), 33(4): 373-383

    [48]

    张泽明, 郑来林, 王金丽, 赵旭东, 石超. 2007. 东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩——印度大陆向欧亚板块之下俯冲至80~100km深度的证据. 地质通报, 26(1): 1-12

    [49]

    张泽明, 王金丽, 赵国春, 石超. 2008. 喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化. 岩石学报, 24(7): 1477-1487

    [50]

    钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26(4): 289-295

  • 加载中
计量
  • 文章访问数:  6269
  • PDF下载数:  8370
  • 施引文献:  0
出版历程
收稿日期:  2014-05-10
修回日期:  2014-07-25
刊出日期:  2014-10-31

目录