扬子地块西南缘大红山群变质基性岩的地球化学研究及构造意义

杨红, 刘平华, 孟恩, 王舫, 肖玲玲, 刘超辉. 扬子地块西南缘大红山群变质基性岩的地球化学研究及构造意义[J]. 岩石学报, 2014, 30(10): 3021-3033.
引用本文: 杨红, 刘平华, 孟恩, 王舫, 肖玲玲, 刘超辉. 扬子地块西南缘大红山群变质基性岩的地球化学研究及构造意义[J]. 岩石学报, 2014, 30(10): 3021-3033.
YANG Hong, LIU PingHua, MENG En, WANG Fang, XIAO LingLing, LIU ChaoHui. Geochemistry and its tectonic implications of metabasite in the Dahongshan Group in southwestern Yangtze block[J]. Acta Petrologica Sinica, 2014, 30(10): 3021-3033.
Citation: YANG Hong, LIU PingHua, MENG En, WANG Fang, XIAO LingLing, LIU ChaoHui. Geochemistry and its tectonic implications of metabasite in the Dahongshan Group in southwestern Yangtze block[J]. Acta Petrologica Sinica, 2014, 30(10): 3021-3033.

扬子地块西南缘大红山群变质基性岩的地球化学研究及构造意义

  • 基金项目:

    本文受国家自然科学基金项目(41372069、40725007)和中国地质调查局地质调查工作项(12120114061901、1212011121276)联合资助。

Geochemistry and its tectonic implications of metabasite in the Dahongshan Group in southwestern Yangtze block

  • 扬子地块西缘近年报道了大量古元古代晚期的地层和侵入岩体,这些地层和岩体的构造环境多数被认为与大陆裂谷相关,而位于扬子西缘的~1.7Ga大红山群一直缺少相关的地球化学证据。本研究对大红山群两种变质基性岩——石榴(斜长)角闪岩(A组)和绿帘斜长角闪岩(B组)的主微量元素进行了地球化学分析,并对其构造环境进行了判别。A、B两组变质基性岩基本具有相似的地球化学性质:主量元素SiO2含量集中于46%~50%,MgO含量较低(5%~6%),但A组FeOT(平均14.28%)远高于B组FeOT(平均3.26%),可能与A组后期发生铁矿化作用有关;两组角闪岩的REE配分模式较一致:A组(La/Yb)N=1.52~4.67和B组(La/Yb)N=1.34~4.50,显示LREE轻微富集,Eu异常、Ce异常均不明显:Eu/Eu*=0.82~1.24,Ce/Ce*=0.93~1.05,两组样品稀土元素特征均具有类似富集型洋中脊玄武岩(E-MORB)的特征;二者的微量元素配分模式也基本一致:相容元素Cr、Co、Ni含量变化较大,不相容元素相对富集,Nb、Ta、Ti负异常不明显,Zr、Hf轻微负异常,其微量元素配分模式区别于岛弧玄武岩和OIB,而与E-MORB较一致。大红山群变质基性岩的地球化学性质可与东川群的基性侵入岩进行类比。A、B两组变质基性岩的原岩为拉斑玄武岩,通过不活动元素构造判别图解推断其构造属性为与富集地幔有关的大陆裂谷环境。变质基性岩中未受陆壳混染样品(Nb/La≈1)的微量、稀土元素地球化学特征显示其岩浆源区可能为富集地幔,结合前人已发表的相关εNd(t)推测大红山群变质基性岩的岩浆源区为不均匀的岩石圈地幔。同样,据扬子西缘相关火山岩的εNd(t)、εHf(t)值推测,扬子西缘1.8~1.5Ga变质火成岩的岩浆源区可能为不均匀的岩石圈地幔。本研究为扬子西缘1.8~1.5Ga大陆裂谷环境的构造岩浆活动提供了新的地球化学证据,大红山群与其同时代火成岩及地层的存在,共同表明了扬子西缘曾在古-中元古代发生了一系列与大陆裂解有关的构造岩浆事件,这期事件是哥伦比亚大陆裂解在扬子西缘的响应。
  • 加载中
  • [1]

    Agrawal S, Guevara M and Verma SP. 2008. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50(12): 1057-1079

    [2]

    Barnes SJ, Naldrett AJ and Gorton MP. 1985. The origin of the fractionation of platinum-group elements in Terrestrial magmas. Chemical Geology, 53(3-4): 303-323

    [3]

    Boynton DG. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Elsevier, 63-114

    [4]

    Chang LH, Chen MY, Jin W, Li SC and Yu JJ. 2006. Manual for Identification of Transparent Minerals in Thin Section. Beijing: Geological Publishing House, 158-159 (in Chinese)

    [5]

    Condie KC. 2002. Breakup of a Paleoproterozoic supercontinent. Gondwana Research, 5(1): 41-43

    [6]

    Dupuy C and Dostal J. 1984. Trace element geochemistry of some continental tholeiites. Earth and Planetary Science Letters, 67(1): 61-69

    [7]

    Fowler AD and Jensen LS. 1989. Quantitative trace-element modeling of the crystallization history of the Kinojevis and Blake River groups, Abitibi Greenstone Belt, Ontario. Canadian Journal of Earth Sciences, 26: 1356-1367

    [8]

    Geng YS, Yang CH, Wang XS, Du LL, Ren LD and Zhou XW. 2008. Metamorphic Basement Evolution in Western Margin of Yangtze Block. Beijing: Geological Publishing House, 1-215 (in Chinese)

    [9]

    Geng YS, Liu YQ, Gao LZ, Peng N and Jiang XJ. 2012. Geochronology of the Mesoproterozoic Tong'an Formation in southwestern margin of Yangtze craton: New evidence from zircon LA-ICP-MS U-Pb ages. Acta Geologica Sinica, 86(9): 1479-1489 (in Chinese with English abstract)

    [10]

    Gong L, He YT, Chen TY and Zhao YS. 1996. Proterozoic Rift-type Copper Deposit in Dongchuan, Yunnan Province. Beijing: Metallurgical Industry Press, 1-161 (in Chinese)

    [11]

    Greentree MR and Li ZX. 2008. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallization age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5-6): 289-302

    [12]

    Guan JL, Zheng LL, Liu JH, Sun ZM and Cheng WH. 2011. Zircons SHRIMP U-Pb dating of diabase from Hekou, Sichuan Province, China and its geological significance. Acta Geologica Sinica, 85(4): 482-490 (in Chinese with English abstract)

    [13]

    Guo JH, Sun M, Chen FK et al. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24(5): 629-642

    [14]

    Guo Y, Wang SW, Sun XM, Wang ZZ, Zhou BG, Yang B, Liao ZW, Hou L, Zhu HP and Luo MJ. 2012. Zircon U-Pb dating for Paleoproterozoic diabase from Fe-Cu deposit of Wuding area and its relationship with mineralization. Mineral Deposits, 31(Suppl.): 545-546(in Chinese)

    [15]

    Hou L, Ding J, Deng J, Liao ZW and Peng HJ. 2013. Zircon LA-ICP-MS dating of the magmatic breccia from the Yinachang iron-copper deposit in Wuding County of Yunnan Province and its geological significance. Geological Bulletin of China, 32(4): 580-588 (in Chinese with English abstract)

    [16]

    Hu AQ, Zhu BQ, Mao CX, Zhu NJ and Huang RS. 1991. Geochronology of the Dahongshan Group. Chinese Journal of Geochemistry, 10(3): 195-203

    [17]

    Hua RM. 1990. On the Kunyang Aulacogen. Acta Geologica Sinica, (4): 289-301 (in Chinese)

    [18]

    Kerrich R, Polat A, Wyman D and Hollings P. 1999. Trace element systematics of Mg- to Fe-tholeiite basalt suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis. Lithos, 46(1): 163-187

    [19]

    McCulloch MT and Gamble JA. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3-4): 358-374

    [20]

    Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, 19(2): 290-300

    [21]

    Pearce JA. 1975. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, 25(1-2): 41-67

    [22]

    Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorp RS (ed.). Andesites: Orogenic Andesites and Related Rocks. New York: John Wiley and Sons, 525-548

    [23]

    Pearce JA. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ and Norry MJ (eds.). Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire: Shiva Publishing, 230-249

    [24]

    Peng M, Wu YB, Wang J, Jiao WF, Liu XC and Yang SH. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chinese Science Bulletin, 54(6): 1098-1104

    [25]

    Peng P, Zhai MG, Ernst RE et al. 2008. A 1.78Ga large igneous province in the North China craton: The Xiong'er Volcanic Province and the North China dyke swarm. Lithos, 101(3-4): 260-280

    [26]

    Polat A, Hofmann AW and Rosing MT. 2002. Boninite-like volcanic rocks in the 3.7~3.8Ga Isuagreenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical geology, 184(3-4): 231-254

    [27]

    Polat A and Hofmann AW. 2003. Alteration and geochemical patterns in the 3.7~3.8Ga Isua greenstone belt, West Greenland. Precambrian Research, 126(3): 197-218

    [28]

    Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22

    [29]

    Rolllison. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. London: Longman Group, 1-352

    [30]

    Rudnick RL, McLennan SM and Taylor SR. 1985. Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochimica et Cosmochimica Acta, 49(7): 1645-1655

    [31]

    Sun M, Chen N, Zhao GC, Wilde SA, Ye K, Guo J, Chen Y and Yuan C. 2008. U-Pb Zircon and Sm-Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China: Implication for the Paleoproterozoic tectonic history of the Yangtze Craton. American Journal of Science, 308(4): 469-483

    [32]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

    [33]

    Sun ZM, Yin FG, Guan JL, Liu JH, Li JM, Geng QR and Wang LQ. 2009. SHRIMP U-Pb dating and its stratigraphic significance of tuff zircons from Heishan Formation of Kunyang Group, Dongchuan area, Yunnan Province, China. Geological Bulletin of China, 28(7): 896-900 (in Chinese with English abstract)

    [34]

    Wang DB, Sun ZM, Yin FG, Wang LQ, Wang BD and Zhang WP. 2012. Geochronology of the Hekou Group on the western margin of the Yangtze Block: Evidence from zircon LA-ICP-MS U-Pb dating of volcanic rocks. Journal of Stratigraphy, 36(3): 630-635 (in Chinese with English abstract)

    [35]

    Wang DB, Yin FG, Sun ZM, Wang LQ, Wang BD, Liao SY, Tang Y and Ren GM. 2013. Zircon U-Pb age and Hf isotope of Paleoproterozoic mafic intrusion on the western margin of the Yangtze Block and their implications. Geological Bulletin of China, 2013, 32(4): 617-630 (in Chinese with English abstract)

    [36]

    Wang SW, Liao ZW, Sun XM, Jiang XF, Zhou BG, Guo Y, Luo MJ, Zhu HP and Ma D. 2013. Geochemistry of Paleoproterozoic diabases in the Dongchuan copper deposit, Yunnan, SW China: Response to breakup of the Columbia supercontinent in the southwestern margin of Yangtze block. Acta Geologica Sinica, 87(12): 1834-1852 (in Chinese with English abstract)

    [37]

    Wang W and Zhou MF. 2014. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: Implication for the breakup of the supercontinent Columbia. Tectonophysics, 610: 110-127

    [38]

    Wang ZZ, Guo Y, Yang B, Wang SW, Sun XM, Hou L, Zhou BG and Liao ZW. 2013. Discovery of the 1.73Ga Haizi anorogenic type granite in the western margin of Yangtze Craton, and its geological significance. Acta Geologica Sinica, 87(9): 931-942 (in Chinese with English abstract)

    [39]

    Weaver BL. 1991. The origin of oceanic basalt end-member compositions: Trace element and isotopic constrains. Earth and Planetary Science Letters, 104(2-4): 381-397

    [40]

    Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187

    [41]

    Winchester JA and Floyd PA. 1977. Geological discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343

    [42]

    Wood DA, Joron JL and Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45(2): 326-336

    [43]

    Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11-30

    [44]

    Woodhead JD. 1988. The origin of geochemical variations in Mariana Lavas: A general model for Petrogenesis in Intra-Oceanic Island Arcs? Journal of Petrology, 29(4): 805-830

    [45]

    Wu YB, Gao S, Gong HJ et al. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Paleoproterozoic high-grade metamorphism. Journal of Metamorphic Geology, 27(6): 461-477

    [46]

    Xiong Q, Zheng JP, Yu CM, Su YP, Tang HY and Zhang ZH. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: Signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin, 54(3): 436-446

    [47]

    Xu QD. 1998. Original petrology and tectonic setting of meta-volcanic rocks from Dahongshan Group, Central Yunnan. Geochimica, 27(5): 422-431 (in Chinese with English Abstract)

    [48]

    Yang H, Liu FL, Du LL, Liu PH and Wang F. 2012. Zircon U-Pb dating for metavolcanites in the Laochanghe Formation of the Dahongshan Group in southwestern Yangtze Block, and its geological significance. Acta Petrologica Sinica, 28(9): 2994-3014 (in Chinese with English abstract)

    [49]

    Yang YM. 2004. Study on geochemistry of Fe-Cu-REE deposit in Kunyang Group in Mid-Proterozoic. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-99 (in Chinese with English summary)

    [50]

    Yang YM, Tu GZ, Hu RZ and Shi XF. 2005. Sm-Nd isotopic geochronology of the the Yinachang Fe-Cu-REE deposit at Wuding, Yunnan Province and its genetic significance. Chinese Science Bulletin, 50(18): 2090-2096

    [51]

    Ye XT, Zhu WG, Zhong H, He DF, Ren T, Bai ZJ, Fan HP and Hu WJ. 2013. Zircon U-Pb and chalcopyrite Re-Os geochronology, REE geochemistry of the Yinachang Fe-Cu-REE deposit in Yunnan Province and its geological significance. Acta Petrologica Sinica, 29(4): 1167-1186 (in Chinese with English abstract)

    [52]

    Yin FG, Wang DB, Sun AM, Ren GM and Pang WH. 2012. Columbia supercontinent: New insights from the western margin of the Yangtze landmass. Sedimentary Geology and Tethyan Geology, 32(3): 31-40 (in Chinese with English abstract)

    [53]

    Zhai MG and Liu WJ. 2003. Paleoproterozoic tectonic history of the North China Craton: A review. Precambrian Research, 122(1-4): 183-199

    [54]

    Zhang HX, Liu CQ, Xu ZF and Huang ZL. 2001. Geochemical evidence of the Lower Proterozoic subduction system at the western margin of the Yangtze plate: The trace element geochemical study of related metamorphic basaltic rocks. Acta Mineralogica Sinica, 21(2): 231-238 (in Chinese with English abstract)

    [55]

    Zhang LJ, Ma CQ, Wang LX et al. 2011. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological significance. Chinese Science Bulletin, 56(3): 306-318

    [56]

    Zhang SB, Zheng YF, Wu YB et al. 2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151(3-4): 265-288

    [57]

    Zhang SH, Zhao Y and Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339-367

    [58]

    Zhao CZ, Liu ZC and Li FY. 1999. The characteristics of Huili-Dongchuan Proterozoic marine volcanic rock zone and its tectonic setting. Journal of Mineralogy and Petrology, 19(2): 17-24 (in Chinese with English abstract)

    [59]

    Zhao GC, Cawood PA, Wilde SA and Sun M. 2002. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59: 125-162

    [60]

    Zhao TP, Chen W and Zhou MF. 2009. Geochemical and Nd-Hf isotopic constraints on the origin of the ~1.74Ga Damiao anorthosite complex, North China Craton. Lithos, 113(3-4): 673-690

    [61]

    Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH and Yang JH. 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57-69

    [62]

    Zhao XF and Zhou MF. 2011. Fe-Cu deposit in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Mineralium Deposita, 46(7): 731-747

    [63]

    Zhou JY, Mao JW, Liu FY, Tan HQ, Shen B, Zhu ZM, Chen JB, Luo LP, Zhou X and Wang Y. 2011. SHRIMP U-Pb zircon chronology and geochemistry of albite from the Hekou Group in the western Yangtze Block. Journal of Mineralogy and Petrology, 31(3): 66-73 (in Chinese with English abstract)

    [64]

    Zhu HP, Fan WY, Zhou BG, Wang SW, Luo MJ, Liao ZW and Guo Y. 2011. Assessing Precambrian stratigraphic sequence of Dongchuan area: Evidence from zircon SHRIMP and LA-ICP-Ms dating. Geological Journal of China Universities, 17(3): 452-461 (in Chinese with English abstract)

    [65]

    常丽华, 陈曼云, 金巍, 李世超, 于介江. 2006. 透明矿物薄片鉴定手册. 北京: 地质出版社, 158-159

    [66]

    耿元生, 杨崇辉, 王新社, 杜利林, 任留东, 周喜文. 2008. 扬子地台西缘变质基底演化. 北京: 地质出版社, 1-215

    [67]

    耿元生, 柳永清, 高林志, 彭楠, 江小均. 2012. 扬子克拉通西南缘中元古代通安组的形成时代——锆石LA-ICPMS U-Pb年龄. 地质学报, 86(9): 1479-4190

    [68]

    龚琳, 何毅特, 陈天佑, 赵玉山. 1996. 云南东川元古宙裂谷型铜矿. 北京: 冶金工业出版社, 1-161

    [69]

    关俊雷, 郑来林, 刘建辉, 孙志明, 程万华. 2011. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 85(4): 482-490

    [70]

    郭阳, 王生伟, 孙晓明, 王子正, 周邦国, 杨斌, 廖震文, 侯林, 朱华平, 罗茂金. 2012. 武定铁铜矿区古元古代辉绿岩锆石U-Pb年龄及其成矿的关系. 矿床地质, 31(增刊): 545-546

    [71]

    侯林, 丁俊, 邓军, 廖震文, 彭惠娟. 2013. 云南武定迤纳厂铁铜矿岩浆角砾岩LA-ICP-MS锆石U-Pb年龄及其意义. 地质通报, 32(4): 580-588

    [72]

    华仁民. 1990. 论昆阳拗拉谷. 地质学报, (4): 289-301

    [73]

    孙志明, 尹福光, 关俊雷, 刘建辉, 李军敏, 耿全如, 王立全. 2009. 云南东川地区昆阳群黑山组凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义. 地质通报, 28(7): 896-900

    [74]

    王冬兵, 孙志明, 尹福光, 王立全, 王保弟, 张万平. 2012. 扬子地块西缘河口群的时代: 来自火山岩锆石LA-ICP-MS U-Pb年龄的证据. 地层学杂志, 36(3): 630-635

    [75]

    王冬兵, 尹福光, 孙志明, 王立全, 王保弟, 廖世勇, 唐渊, 任光明. 2013. 扬子陆块西缘古元古代基性侵入岩LA-ICP-MS锆石和Hf同位素及其地质意义. 地质通报, 32(4): 617-630

    [76]

    王生伟, 廖震文, 孙晓明, 蒋小芳, 周邦国, 郭阳, 罗茂金, 朱华平, 马东. 2013. 云南东川铜矿区古元古代辉绿岩地球化学——Columbia超级大陆裂解在扬子陆块西南缘的响应. 地质学报, 87(12): 1834-1852

    [77]

    王子正, 郭阳, 杨斌, 王生伟, 孙晓明, 侯林, 周邦国, 廖震文. 2013. 扬子克拉通西缘1.73Ga非造山型花岗斑岩的发现及其地质意义. 地质学报, 87(9): 931-942

    [78]

    徐启东. 1998. 滇中大红山岩群变质火山岩类的原岩性质和构造属性. 地球化学, 27(5): 422-431

    [79]

    杨红, 刘福来, 杜利林, 刘平华, 王舫. 2012. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义. 岩石学报, 28(9): 2994-3014

    [80]

    杨耀民. 2004. 中元古代昆阳群Fe-Cu-REE矿床地球化学研究——以武定迤纳厂矿床为例. 博士学位论文. 贵阳: 中国科学院地球化学研究所, 1-99

    [81]

    杨耀民, 涂光炽, 胡瑞忠, 石学法. 2005. 武定迤纳厂Fe-Cu-REE矿床Sm-Nd同位素年代学及其地质意义. 科学通报, 50(12): 1253-1258

    [82]

    叶现韬, 朱维光, 钟宏, 何德锋, 任涛, 柏中杰, 范宏鹏, 胡文俊. 2013. 云南武定迤纳厂Fe-Cu-REE矿床的锆石U-Pb和黄铜矿Re-Os年代学、稀土元素地球化学及其地质意义. 岩石学报, 29(4): 1167-1186

    [83]

    尹福光, 王冬兵, 孙志明, 任光明, 庞维华. 2012. 哥伦比亚超大陆在扬子陆块西缘的探秘. 沉积与特提斯地质, 32(3): 31-40

    [84]

    张鸿翔, 刘丛强, 徐志方, 黄智龙. 2001. 扬子板块西缘早元古代俯冲体系的地球化学证据——有关变基性岩的微量元素地球化学研究. 矿物学报, 21(2): 231-238

    [85]

    赵彻终, 刘肇昌, 李凡友. 1999. 会理-东川元古代海相火山岩带的特征与形成环境. 矿物岩石, 19(2): 17-24

    [86]

    周家云, 毛景文, 刘飞燕, 谭洪旗, 沈冰, 朱志敏, 陈家彪, 罗丽萍, 周雄, 王越. 2011.扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征. 矿物岩石, 31(3): 66-73

    [87]

    朱华平, 范文玉, 周邦国, 王生伟, 罗茂金, 廖震文, 郭阳. 2011. 论东川地区前震旦系地层层序: 来自锆石SHRIMP及LA-ICP-MS测年的证据. 高校地质学报, 17(3): 452-461

  • 加载中
计量
  • 文章访问数:  6109
  • PDF下载数:  6416
  • 施引文献:  0
出版历程
收稿日期:  2014-01-11
修回日期:  2014-04-25
刊出日期:  2014-10-31

目录